Research on Lightweight Depth Network for Rapid Flame Detection
WANG Bin, LI Jing, ZHAO Kang, ZHOU Wen
1.School of Data Science and Technology, North University of China, Taiyuan 030051, China
2.Shanxi Xinsibei Technology Co., Ltd., Jinzhong, Shanxi 030600, China
WANG Bin, LI Jing, ZHAO Kang, ZHOU Wen. Research on Lightweight Depth Network for Rapid Flame Detection[J]. Computer Engineering and Applications, 2022, 58(17): 256-262.
[1] CHAOXIA C,SHANG W,ZHANG F,et al.Weakly aligned multimodal flame detection for fire-fighting robots[J].IEEE Transactions on Industrial Informatics,doi:10.1109/TII.2022.3158668.
[2] JAIN A,SRIVASTAVA A.Privacy-preserving efficient fire detection system for indoor surveillance[J].IEEE Transactions on Industrial Informatics,2022,18(5):3043-3054.
[3] BUSHNAQ O M,CHAABAN A,AL-NAFFOURI T Y.The role of UAV-IoT networks in future wildfire detection[J].IEEE Internet of Things Journal,2021,23(8):16984-16999.
[4] SILVA J,HUANG C,NOGUEIRA F,et al.EdgeFire-Smoke:a novel lightweight CNN model for real-time video fire-smoke detection[J].IEEE Transactions on Industrial Informatics,doi:10.1109/TII.2021.3138752.
[5] ZHANG N,SUN L,SUN Z.GF-4 satellite fire detection with an improved contextual algorithm[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:163-172.
[6] WANG T,BU L,YANG Z,et al.A new fire detection method using a multi-expert system based on color dispersion,similarity and centroid motion in indoor environment[J].IEEE/CAA Journal of Automatica Sinica,2020,7(1):263-275.
[7] XIE Y,ZHU J,CAO Y,et al.Efficient video fire detection exploiting motion-flicker-based dynamic features and deep static features[J].IEEE Access,2020,8:81904-81917.
[8] HUANG X,DU L.Fire detection and recognition optimization based on virtual reality video image[J].IEEE Access,2020,8:77951-77961.
[9] 李欣健,张大胜,孙利雷,等.复杂场景下基于CNN的轻量火焰检测方法[J].模式识别与人工智能,2021,34(5):415-422.
LI Xinjian,ZHANG Dasheng,SUN Lilei,et al.CNN-based lightweight flame detection method in complex scenes[J].Pattern Recognition and Artificial Intelligence,2021,34(5):415-422.
[10] 王鑫鹏,王晓强,林浩,等.深度学习典型目标检测算法的改进综述[J].计算机工程与应用,2022,58(6):42-57.
WANG Xinpeng,WANG Xiaoqiang,LIN Hao,et al.Review on improvement of typical object detection algorithms in deep learning[J].Computer Engineering and Applications,2022,58(6):42-57.
[11] 谷典典,石屹宁,刘譞哲,等.基于元算子的深度学习框架缺陷检测方法[J].计算机学报,2022,45(2):240-255.
GU Diandian,SHI Yining,LIU Xuanzhe,et al.Defect detection for deep learning frameworks based on meta operators[J].Chinese Journal of Computers,2022,45(2):240-255.
[12] MUHAMMAD K,KHAN S,ELHOSENY M,et al.Efficient fire detection for uncertain surveillance environment[J].IEEE Transactions on Industrial Informatics,2019,15(5):3113-3122.
[13] LI S,YAN Q,LIU P.An efficient fire detection method based on multiscale feature extraction,implicit deep supervision and channel attention mechanism[J].IEEE Transactions on Image Processing,2020,29:8467-8475.
[14] BARI A,SAINI T,KUMAR A.Fire detection using deep transfer learning on surveillance videos[C]//2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks(ICICV),2021:1061-1067.
[15] SHARMA J,GRANMO O C,GOODWIN M,et al.Deep convolutional neural networks for fire detection in images[J].Communications in Computer and Information Science,2017:183-193.
[16] BARMPOUTIS P,DIMITROPOULOS K,KAZA K,et al.Fire detection from images using faster R-CNN and multidimensional texture analysis[C]//Proceedings-ICASSP,IEEE International Conference on Acoustics,Speech and Signal Processing,2019:8301-8305.
[17] LI P,ZHAO W.Image fire detection algorithms based on convolutional neural networks[J].Case Studies in Thermal Engineering,2020,19:100625.
[18] SUN K,ZHAO Q,WANG X.Using knowledge inference to suppress the lamp disturbance for fire detection[J].Journal of Safety Science and Resilience,2021,2(3):124-130.
[19] MUHAMMAD K,AHMAD J,LV Z,et al.Efficient deep CNN-based fire detection and localization in video surveillance applications[J].IEEE Transactions on Image Processing,2018,29:8467-8475.
[20] WANG S,CHEN T,LV X,et al.Forest fire detection based on lightweight Yolo[C]//2021 33rd Chinese Control and Decision Conference(CCDC),2021:1560-1565.
[21] SHEN C,HU J,WANG C,et al.LFNet:lightweight fire smoke detection for uncertain surveillance environment[C]//2020 6th International Conference on Big Data and Information Analytics(BigDIA),Shenzhen,China,2020:11-17.
[22] 周天宇,朱启兵,黄敏,等.基于轻量级卷积神经网络的载波芯片缺陷检测[J].计算机工程与应用,2022,58(7):213-219.
ZHOU Tianyu,ZHU Qibing,HUANG Min,et al.Defect detection of chip on carrier based on lightweight convolutional neural network[J].Computer Engineering and Applications,2022,58(7):213-219.
[23] 王欣,王美丽,边党伟.融合MobileNetv2和注意力机制的轻量级人像分割算法[J].计算机工程与应用,2022,58(7):220-228.
WANG Xin,WANG Meili,BIAN Dangwei.Algorithm for portrait segmentation combined with MobileNetv2 and attention mechanism[J].Computer Engineering and Applications,2022,58(7):220-228.
[24] 马利,刘新宇,李皓宇,等.应用空洞卷积的神经网络轻量化方法[J].计算机工程与应用,2022,58(5):85-93.
MA Li,LIU Xinyu,LI Haoyu,et al.Neural network lightweight method with dilated convolution[J].Computer Engineering and Applications,2022,58(5):85-93.
[25] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:770-778.
[26] ADDABBO T.Smart gravimetric system for enhanced security of accesses to public places embedding a MobileNet neural network classifier[J].IEEE Transactionson Instrumentation and Measurement,2022,71:1-10.
[27] WANG Q,WU B,ZHU P,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),Seattle,WA,USA,2020:11531-11539.
[28] HU J,SHEN L,ALBANIE S,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
[29] BOCHKOVSKIY A,WANG C Y,LIAO H.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
[30] LOSHCHILOV I,HUTTER F.SGDR:stochastic gradient descent with warm restarts[J].arXiv:1608.03983,2016.
[31] TAN M,PANG R,LE Q V.EfficientDet:scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:10781-10790.
[32] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//Computer Vision-ECCV 2018,2018:3-19.
[33] ROY A G,NAVAB N,WACHINGER C.Concurrent spatial and channel squeeze & excitation in fully convolutional networks[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention,2018.