Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (18): 59-70.DOI: 10.3778/j.issn.1002-8331.2201-0397
• Research Hotspots and Reviews • Previous Articles Next Articles
FENG Yanyan, WEI Dejian, NI Wei
Online:
2022-09-15
Published:
2022-09-15
冯妍妍,魏德健,倪伟
FENG Yanyan, WEI Dejian, NI Wei. Application of Deep Learning in Auxiliary Diagnosis of Pulmonary Nodules[J]. Computer Engineering and Applications, 2022, 58(18): 59-70.
冯妍妍, 魏德健, 倪伟. 深度学习在肺结节辅助诊断中的应用[J]. 计算机工程与应用, 2022, 58(18): 59-70.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2201-0397
[1] SUNG H,FERLAY J,SIEGEL R L,et al.Global cancer statistics 2020:globocan estimates of incidenceand mortality worldwide for 36 cancers in 185 countries[J].Ca:a Cancer Journal for Clinicians,2021,71(3):209-249. [2] QIU H,CAO S,XU R.Cancer incidence,mortality,and burden in China:a time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020[J].Cancer Communications,2021,41(10):1037-1048. [3] CAREY S,KANDEL S,FARRELL C,et al.Comparison of conventional chest X ray with a novel projection technique for ultra-low dose CT[J].Medical Physics,2021,48(6):2809-2815. [4] WANG Y,WANG J,YANG S,et al.Proposing a deep learning-based method for improving the diagnostic certainty of pulmonary nodules in CT scan of chest[J].European Radiology,2021,31(11):8160-8167. [5] 张福玲,张少敏.应用于CT图像肺结节检测的深度学习方法综述[J].计算机工程与应用,2020,56(13):20-32. ZHANG F L,ZHANG S M.Review of deep learning methods applied to lung nodule detection in CT images[J].Computer Engineering and Applications,2020,56(13):20-32. [6] LI D,MIKELA VILMUN B,FREDERIK CARLSEN J,et al.The performance of deep learning algorithms on automatic pulmonary nodule detection and classification tested on different datasets that are not derived from LIDC-IDRI:a systematic review[J].Diagnostics,2019,9(4):207. [7] 王远航,唐震.神经网络在CT肺结节的分类应用进展[J].牡丹江医学院学报,2021,42(2):135-137. WANG Y H,TANG Z.Advances in the classification and application of neural network in CT pulmonary nodules[J].Journal of Mudanjiang Medical University,2021,42(2):135-137. [8] JIANG W,ZENG G,WANG S,et al.Application of deep learning in lung cancer imaging diagnosis[J].Journal of Healthcare Engineering,2022,52(5):584-596. [9] FARHAT H,SAKR G E,KILANY R.Deep learning applications in pulmonary medical imaging:recent updates and insights on Covid-19[J].Machine Vision and Applications,2020,31(6):1-42. [10] FRATTINI M,FROESCH P,EPISTOLIO S.Overview of recent advances in molecular analysis for diagnosing early stage lung cancer nodules[J].Translational Lung Cancer Research,2021,10(11):4303. [11] GUERRINI S,DEL ROSCIO D,ZANONI M,et al.Lung cancer imaging:screening result and nodule management[J].International Journal of Environmental Research and Public Health,2022,19(4):2460. [12] ARMATO III S G,MCLENNAN G,BIDAUT L,et al.The lung image database consortium(LIDC) and image database resource initiative(IDRI):a completed reference database of lung nodules on CT scans[J].Medical Physics,2011,38(2):915-931. [13] SETIO A A A,TRAVERSO A,DE BEL T,et al.Validation,comparison,and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images:the luna16 challenge[J].Medical Image Analysis,2017,42:1-13. [14] Trial summary-learn-NLST—the cancer data access system[EB/OL].[2019-12-31].https://biometry.nci.nih.gov/cdas/ learn/nlst/trial-summary/. [15] KUAN K,RAVAUT M,MANEK G,et al.Deep learning for lung cancer detection:tackling the kaggle data science bowl 2017 challenge[J].arXiv:1705.09435,2017. [16] SHIRAISHI J,KATSURAGAWA S,IKEZOE J,et al.Development of a digital image database for chest radiographs with and without a lung nodule[J].American Journal of Roentgenology,2000,174(1):71-74. [17] Danish lung cancer screening trial(DLCST).Full text view-clinicaltrials[EB/OL].[2019-12-31].https://clinicaltrials.gov/ct2/show/NCT00496977. [18] Alitianchi data[EB/OL].[2019-12-31].https://tianchi.ali-yun.com/competition/entrance/231601/information. [19] ARMATO III,SAMUEL G,HADJIISKI L,et al.SPIE-AAPM-NCI lung nodule classification challenge dataset[C]//Proceedings of 2015 SPIE Medieal Imaging Conference,2015. [20] 孙浩天,袁刚,杨杨,等.基于三维各向异性卷积的肺结节良恶性分类[J].计算机工程与应用,2021,57(10):133-138. SUN H T,YUAN G,YANG Y,et al.3D anisotropic convolution based pulmonary nodule classification[J].Computer Engineering and Applications,2021,57(10):133-138. [21] LU X,GU Y,YANG L,et al.Multi-level 3d densenets for false-positive reduction in lung nodule detection based on chest computed tomography[J].Current Medical Imaging,2020,16(8):1004-1021. [22] 罗嘉滢,赵涓涓,强彦,等.基于多特征广义深度自编码的肺结节诊断方法[J].计算机工程与设计,2019,40(1):154-160. LUO J Y,ZHAO J J,QIANG Y,et al.Diagnosis of pulmonary nodules based on multi-feature generalized depth autoencoding[J].Computer Engineering and Design,2019,40(1):154-160. [23] 张华丽,康晓东,冉华,等.用于肺结节影像分类识别的DBN与CNN的比较研究[J].计算机科学,2020,47(S1):254-259. ZHANG H L,KANG X D,RAN H,et al.A comparative study of DBN and CNN for image classification and recognition of lung nodules[J].Computer Science,2020,47(S1):254-259. [24] 张婷,赵文婷,赵涓涓,等.改进的深度信念网络肺结节良恶性分类[J].计算机工程与设计,2018,39(9):2707-2713. ZHANG T,ZHAO W T,ZHAO J J,et al.Improved deep belief network classification of benign and malignant pulmonary nodules[J].Computer Engineering and Design,2018,39(9):2707-2713. [25] LI Y,LIAO C,WANG Y,et al.Energy-efficient optimal relay selection in cooperative cellular networks based on double auction[J].IEEE Transactions on Wireless Communications,2015,14(8):4093-4104. [26] HSU S,YANG C,HUANG C,et al.Semistargan:semi-supervised generative adversarial networks for multi-domain image-to-image translation[C]//Asian Conference on Computer Vision,2018:338-353. [27] KUANG Y,LAN T,PENG X,et al.Unsupervised multi-discriminator generative adversarial network for lung nodule malignancy classification[J].IEEE Access,2020,8:77725-77734. [28] 李莉,张浩洋,乔璐.基于改进深度卷积对抗生成网络的肺结节良恶性分类[J].计算机工程,2020,46(12):262-269. LI L,ZHANG H Y,QIAO L.Benign and malignant classification of lung nodules based on improved deep convolutional adversarial generation network[J].Computer Engineering,2020,46(12):262-269. [29] HUA K,HSU C,HIDAYATI S C,et al.Computer-aided classification of lung nodules on computed tomography images via deep learning technique[J].Oncotargets and Therapy,2015,8. [30] SHEN W,ZHOU M,YANG F,et al.Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification[J].Pattern Recognition,2017,61:663-673. [31] XIE Y,XIA Y,ZHANG J,et al.Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT[J].IEEE Transactions on Medical Imaging,2019,38(4):991-1004. [32] ZUO W,ZHOU F,LI Z,et al.Multi-resolution CNN and knowledge transfer for candidate classification in lung nodule detection[J].IEEE Access,2019,7:32510-32521. [33] XIE S,TU Z.Holistically-nested edge detection[C]//2015 IEEE International Conference on Computer Vision(ICCV),2016. [34] LEI Y,TIAN Y,SHAN H,et al.Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping[J].Medical Image Analysis,2020,60:101628. [35] LIN T,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125. [36] SHEN L,WANG X,GAO M,et al.Classification of benign-malignant pulmonary nodules based on multi-view improved dense network[C].[S.l.]:Springer International Publishing,2021:582-593. [37] VEASEY B,FARHANGI M M,FRIGUI H,et al.Lung nodule malignancy classification based on nlstx data[C]//2020 IEEE 17th International Symposium on Biomedical Imaging(ISBI),2020:1870-1874. [38] VEASEY B P,BROADHEAD J,DAHLE M,et al.Lung nodule malignancy prediction from longitudinal CT scans with siamese convolutional attention networks[J].IEEE Open Journal of Engineering in Medicine and Biology,2020,1:257-264. [39] LIMA T J B,ARAIUJO F H D D,FILHO A O D C,et al.Evaluation of data balancing techniques in 3D CNNs for the classification of pulmonary nodules in CT images[C]//2020 IEEE Symposium on Computers and Communications(ISCC),2020. [40] 杨建利,朱德江,邵嘉俊,等.三维多尺度交叉融合网络肺结节分类研究[J].计算机工程与应用,2022,58(14):121-125. YANG J L,ZHU D J,SHAO J J,et al.Research on classification of pulmonary nodules by three-dimensional multi-scale cross fusion network[J].Computer Engineering and Applications,2022,58(14):121-125. [41] LV W,WANG Y,ZHOU C,et al.Development and validation of a clinically applicable deep learning strategy(honors) for pulmonary nodule classification at CT:a retrospective multicentre study[J].Lung Cancer,2021,155:78-86. [42] AL-SHABI M,LAN B L,CHAN W Y,et al.Lung nodule classification using deep local-global networks[J].International Journal of Computer Assisted Radiology and Surgery,2019,14(10):1815-1819. [43] LEI Y,TIAN Y,SHAN H,et al.Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping[J].Medical Image Analysis,2019,60:101628. [44] CHEN Y,LI J,XIAO H,et al.Dual path networks[J].arXiv:1707.01629,2017. [45] JIANG H,GAO F,XU X,et al.Attentive and ensemble 3d dual path networks for pulmonary nodules classification[J].Neurocomputing,2020,398:422-430. [46] TANG S,MA R,LI Q,et al.Classification of benign and malignant pulmonary nodules based on the multiresolution 3d dpsecn model and semisupervised clust[J].IEEE Access,2021(99). [47] XIA K,CHI J,GAO Y,et al.Adaptive aggregated attention network for pulmonary nodule classification[J].Applied Sciences,2021,11(2):610. [48] POLAT H,DANAEI MEHR H.Classification of pulmonary CT images by using hybrid 3d-deep convolutional neural network architecture[J].Applied Sciences,2019,9(5):940. [49] RAFAEL-PALOU X,AUBANELL A,BONAVITA I,et al.Pulmonary nodule malignancy classification using its temporal evolution with two-stream 3d convolutional neural networks[J].arXiv:2005.11341,2020. [50] 杨帆,谢红薇,刘爱媛.基于卷积神经网络的肺结节分类算法[J].计算机工程与应用,2019,55(7):145-150. YANG F,XIE H W,LIU A Y.Lung nodules classification algorithm based on convolutional neural network[J].Computer Engineering and Applications,2019,55(7):145-150. [51] ASTARAKI M,ZAKKO Y,DASU I T,et al.Benign-malignant pulmonary nodule classification in low-dose CT with convolutional features[J].Physica Medica,2021,83:146-153. [52] ZHAO J,ZHANG C,LI D,et al.Combining multi-scale feature fusion with multi-attribute grading,a CNN model for benign and malignant classification of pulmonary nodules[J].Journal of Digital Imaging,2020,33(4):869-878. [53] NI Z,PENG Y.A serialized classification method for pulmonary nodules based on lightweight cascaded convolutional neural network-long short-term memory[J].International Journal of Imaging Systems and Technology,2020,30(4):950-962. [54] WANG C,CHEN D,HAO L,et al.Pulmonary image classification based on inception-v3 transfer learning model[J].IEEE Access,2019,7:146533-146541. [55] HUANG C,LV W,ZHOU C,et al.Discrimination between transient and persistent subsolid pulmonary nodules on baseline CT using deep transfer learning[J].European Radiology,2020. [56] APOSTOLOPOULOS I D,PINTELAS E G,LIVIERIS I E,et al.Automatic classification of solitary pulmonary nodules in PEt/Ct imaging employing transfer learning techniques[J].Medical & Biological Engineering,2021,59(7). [57] ZHANG G,YANG Z,GONG L,et al.Classification of benign and malignant lung nodules from CT images based on hybrid features[J].Physics in Medicine & Biology,2019,64(12):125011. [58] WANG W,CHAKRABORTY G,CHAKRABORTY B.3D multi-scale densenet for malignancy grade classification of pulmonary nodules[C]//2020 11th International Conference on Awareness Science and Technology,2020:1-4. [59] CHEN H,XIA Y,DUAN H,et al.A computed tomography signs quantization analysis method for pulmonary nodules malignancy grading[J].International Journal of Imaging Systems and Technology,2021. [60] MUZAMMIL M,ALI I,HAQ I U,et al.Pulmonary nodule classification using feature and ensemble learning-based fusion techniques[J].IEEE Access,2021,9:113415-113427. [61] WANG D,ZHANG T,LI M,et al.3d deep learning based classification of pulmonary ground glass opacity nodules with automatic segmentation[J].Computerized Medical Imaging and Graphics,2021,88:101814. [62] BONAVITA I,RAFAEL-PALOU X,CERESA M,et al.Integration of convolutional neural networks for pulmonary nodule malignancy assessment in a lung cancer classification pipeline[J].Computer Methods and Programs in Biomedicine,2020,185:105172. [63] DA NóBREGA R V M,REBOU?AS FILHO P P,RODRIGUES M B,et al.Lung nodule malignancy classification in chest computed tomography images using transfer learning and convolutional neural networks[J].Neural Computing and Applications,2020,32(15):11065-11082. [64] AL-SHABI M,LEE H K,TAN M.Gated-dilated networks for lung nodule classification in CT scans[J].IEEE Access,2019,7:178827-178838. [65] 徐久强,洪丽萍,朱宏博,等.一种用于肺结节恶性度分类的生成对抗网络[J].东北大学学报(自然科学版),2018,39(11):1556-1561. XU J Q,HONG L P,ZHU H B,et al.A generative adversarial network for malignancy classification of lung nodules[J].Journal of Northeastern University(Natural Science Edition),2018,39(11):1556-1561. [66] MESSAY T,HARDIE R C,TUINSTRA T R.Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the lung image database consortium and image database resource initiative dataset[J].Medical Image Analysis,2015,22(1):48-62. [67] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C].[S.l.]:Springer International Publishing,2015:234-241. [68] LIAO F,LIANG M,LI Z,et al.Evaluate the malignancy of pulmonary nodules using the 3-d deep leaky noisy-or network[J].IEEE Transactions on Neural Networks and Learning Systems,2019,30(11):3484-3495. [69] XIAO N,QIANG Y,BILAL ZIA M,et al.Ensemble classification for predicting the malignancy level of pulmonary nodules on chest computed tomography images[J].Oncology Letters,2020,20(1):401-408. |
[1] | LUO Xianglong, GUO Huang, LIAO Cong, HAN Jing, WANG Lixin. Spatiotemporal Short-Term Traffic Flow Prediction Based on Broad Learning System [J]. Computer Engineering and Applications, 2022, 58(9): 181-186. |
[2] | Alim Samat, Sirajahmat Ruzmamat, Maihefureti, Aishan Wumaier, Wushuer Silamu, Turgun Ebrayim. Research on Sentence Length Sensitivity in Neural Network Machine Translation [J]. Computer Engineering and Applications, 2022, 58(9): 195-200. |
[3] | CHEN Yixiao, Alifu·Kuerban, LIN Wenlong, YUAN Xu. CA-YOLOv5 for Crowded Pedestrian Detection [J]. Computer Engineering and Applications, 2022, 58(9): 238-245. |
[4] | FANG Yiqiu, LU Zhuang, GE Junwei. Forecasting Stock Prices with Combined RMSE Loss LSTM-CNN Model [J]. Computer Engineering and Applications, 2022, 58(9): 294-302. |
[5] | GAO Guangshang. Survey on Attention Mechanisms in Deep Learning Recommendation Models [J]. Computer Engineering and Applications, 2022, 58(9): 9-18. |
[6] | JI Meng, HE Qinglong. AdaSVRG: Accelerating SVRG by Adaptive Learning Rate [J]. Computer Engineering and Applications, 2022, 58(9): 83-90. |
[7] | SHI Jie, YUAN Chenxiang, DING Fei, KONG Weixiang. Survey of Building Target Detection in SAR Images [J]. Computer Engineering and Applications, 2022, 58(8): 58-66. |
[8] | XIONG Fengguang, ZHANG Xin, HAN Xie, KUANG Liqun, LIU Huanle, JIA Jionghao. Research on Improved Semantic Segmentation of Remote Sensing [J]. Computer Engineering and Applications, 2022, 58(8): 185-190. |
[9] | YANG Jinfan, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, LI Kecen, GAO Jing. Review of One-Stage Vehicle Detection Algorithms Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(7): 55-67. |
[10] | WANG Bin, LI Xin. Research on Multi-Source Domain Adaptive Algorithm Integrating Dynamic Residuals [J]. Computer Engineering and Applications, 2022, 58(7): 162-166. |
[11] | TAN Shuqiu, TANG Guofang, TU Yuanya, ZHANG Jianxun, GE Panjie. Classroom Monitoring Students Abnormal Behavior Detection System [J]. Computer Engineering and Applications, 2022, 58(7): 176-184. |
[12] | ZHANG Meiyu, LIU Yuehui, HOU Xianghui, QIN Xujia. Automatic Coloring Method for Gray Image Based on Convolutional Network [J]. Computer Engineering and Applications, 2022, 58(7): 229-236. |
[13] | ZHANG Zhuangzhuang, QU Licheng, LI Xiang, ZHANG Minghao, LI Zhaolu. Traffic Flow Prediction with Missing Data Based on Spatial-Temporal Convolutional Neural Networks [J]. Computer Engineering and Applications, 2022, 58(7): 259-265. |
[14] | XU Jie, ZHU Yukun, XING Chunxiao. Research on Financial Trading Algorithm Based on Deep Reinforcement Learning [J]. Computer Engineering and Applications, 2022, 58(7): 276-285. |
[15] | WANG Jing, WANG Kai, YAN Yingjian. Research on Side Channel Attack Technology Based on Conditional Generation Against Network [J]. Computer Engineering and Applications, 2022, 58(6): 110-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||