Partial Point Cloud Registration Based on Dilated Graph Convolution and Outlier Filtering
SUN Zhanli, ZHANG Yuxin, CHEN Xia
1.School of Artificial Intelligence, Anhui University, Hefei 230601, China
2.Key Laboratory of Multi-Modal Cognitive Computing of Anhui Province, Anhui University, Hefei 230601, China
3.School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China
4.School of Information and Computer, Anhui Agricultural University, Hefei 230036, China
SUN Zhanli, ZHANG Yuxin, CHEN Xia. Partial Point Cloud Registration Based on Dilated Graph Convolution and Outlier Filtering[J]. Computer Engineering and Applications, 2022, 58(22): 186-194.
[1] 唐维军,徐琨,柳有权,等.自动驾驶汽车虚拟测试中的树木点云生成方法[J].计算机工程与应用,2021,57(11):185-192.
TANG W J,XU K,LIU Y Q,et al.Tree point cloud generation method in virtual test of autonomous vehicle[J].Computer Engineering and Applications,2021,57(11):185-192.
[2] 钱宝鑫,肖志勇,宋威.改进的卷积神经网络在肺部图像上的分割应用[J].计算机科学与探索,2020,14(8):1358-1367.
QIAN B X,XIAO Z Y,SONG W.Application of improved convolutional neural network in lung image segmentation[J].Journal of Frontiers of Computer Science and Technology,2020,14(8):1358-1367.
[3] 郝雯,王映辉,宁小娟,等.面向点云的三维物体识别方法综述[J].计算机科学,2017,44(9):11-16.
HAO Q,WANG Y H,NING X J,et al.Overview of 3D object recognition methods oriented to point clouds[J].Computer Science,2017,44(9):11-16.
[4] BESL P J,MCKAY N D.A method for registration of 3-D shapes[J].Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.
[5] H?HNEL D,BURGARD W.Probabilistic matching for 3D scan registration[C]//Proceedings of the VDI-Conference Robotik,2002.
[6] AGAMENNONI G,FONTANA S,SIEGWART R Y,et al.Point clouds registration with probabilistic data association[C]//2016 International Conference on Intelligent Robots and Systems,Daejeon,2016:4092-4098.
[7] YANG J,LI H,CAMPBELL D,et al.Go-ICP:a globally optimal solution to 3D ICP point-set registration[J].Transactions on Pattern Analysis and Machine Intelligence,2015,38(11):2241-2254.
[8] ZHOU Q Y,PARK J,KOLTUN V.Fast global registration[C]//14th European Conference on Computer Vision.Cham:Springer,2016:766-782.
[9] BOUAZIZ S,TAGLIASACCHI A,PAULY M.Sparse iterative closest point[J].Computer Graphics Forum,2013,32(5):113-123.
[10] 王庆闪,张军,刘元盛,等.基于NDT与ICP结合的点云配准算法[J].计算机工程与应用,2020,56(7):88-95.
WANG Q S,ZHANG J,LIU Y S,et al.Point cloud registration algorithm based on combination of NDT and ICP[J].Computer Engineering and Applications,2020,56(7):88-95.
[11] AOKI Y,GOFORTH H,SRIVATSAN R A,et al.PointNetLK:robust & efficient point cloud registration using PointNet[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition,Long Beach,2019:7163-7172.
[12] QI C R,SU H,MO K,et al.PointNet:deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,Hawaii,2017:652-660.
[13] LUCAS B D,KANADE T.An iterative image registration technique with an application to stereo vision[C]//7th International Joint Conference on Artificial Intelligence,Vancouver,1981:121-130.
[14] WANG Y,SOLOMON J M.Deep closest point:learning representations for point cloud registration[C]//2019 IEEE/CVF International Conference on Computer Vision,Seoul,2019:3523-3532.
[15] WANG Y,SUN Y B,LIU Z W,et al.Dynamic graph CNN for learning?on?point?clouds[J].Transactions on Graphics,2019,38(5):1-12.
[16] PAPADOPOULO T,LOURAKIS M I A.Estimating the Jacobian of the singular value decomposition:theory and applications[C]//16th European Conference on Computer Vision.Berlin:Springer,2000:554-570.
[17] WANG Y,SOLOMON J M.PRNet:self-supervised learning for partial-to-partial registration[C]//Conference on Neural Information Processing Systems,Vancouver,2019:8814-8826.
[18] JANG E,GU S,POOLE B.Categorical reparameterization with Gumbel-Softmax[J].arXiv:1611.01144,2016.
[19] LI J,ZHANG C,XU Z,et al.Iterative distance-aware simi-larity matrix convolution with mutual-supervised point elimination for efficient point cloud registration[C]//16th European Conference on Computer Vision.Cham:Springer,2020:378-394.
[20] HUANG X S,MEI G F,ZHANG J.Feature-metric registration:a fast semi-supervised approach for robust point cloud registration without correspondences[C]//2020 IEEE Conference on Computer Vision and Pattern Recognition,Hawaii,2020:11366-11374.
[21] WEI H,QIAO Z,LIU Z,et al.End-to-end 3D point cloud learning for registration task using virtual correspondences[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems,Hawaii,2020:2678-2683.
[22] LI G,MULLER M,THABET A,et al.DeepGCNs:can GCNs go as deep as CNNs?[C]//2019 IEEE/CVF International Conference on Computer Vision,Seoul,2019:9267-9276.
[23] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected?convolutional?networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,Hawaii,2017:2261-2269.
[24] YI K M,TRULLS E,ONO Y,et al.Learning to find good correspondences[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake,2018:2666-2674.
[25] SUN W,JIANG W,TRULLS E,et al.ACNe:attentive context normalization for robust permutation-equivariant learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:11286-11295.
[26] ULYANOV D,VEDALDI A,LEMPITSKY V.Instance normalization:the missing ingredient for fast stylization[J].arXiv:1607.08022,2016.
[27] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning.Lille:IMLS,2015:448-456.
[28] WU Z,SONG S,KHOSLA A,et al.3D ShapeNets:a deep representation for volumetric shapes[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition,Boston,2015:1912-1920.
[29] CHANG A X,FUNKHOUSER T,GUIBAS L,et al.Shape-
Net:an information-rich 3D model repository[J].arXiv:1512.03012,2015.
[30] TURK G,LEVOY M.Zippered polygon meshes from range images[C]//21st Annual Conference on Computer Graphics and Interactive Techniques,Orlando,1994:311-318.