Improved 3-D Point Cloud Registration Algorithm with Oriented Bounding Box
LAN Wenhao, LI Ning, TONG Qiang
1.School of Automation, Beijing Information Science and Technology University, Beijing 100101, China
2.School of Computer, Beijing Information Science and Technology University, Beijing 100101, China
LAN Wenhao, LI Ning, TONG Qiang. Improved 3-D Point Cloud Registration Algorithm with Oriented Bounding Box[J]. Computer Engineering and Applications, 2022, 58(14): 177-184.
[1] CHOY C,PARK J,KOLTUN V.Fully convolutional geometric features[C]//Proceedings of the IEEE International Conference on Computer Vision,2019:8958-8966.
[2] ECKART B,KIM K,KAUTZ J.Fast and accurate point cloud registration using trees of gaussian mixtures[J].arXiv:1807.02587,2018.
[3] GOJCIC Z,ZHOU C,WEGNER J D,et al.The perfect match:3D point cloud matching with smoothed densities[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:5545-5554.
[4] WANG Y,SOLOMON J M.Deep closest point:learning representations for point cloud registration[C]//Proceedings of the IEEE International Conference on Computer Vision,2019:3523-3532.
[5] BESL P J,MCKAY N D.A method for registration of 3-D shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.
[6] SEGAL A,HAEHNEL D,THRUN S.Generalized-ICP[C]//Robotics:Science and Systems,2009.
[7] BOUAZIZ S,TAGLIASACCHI A,PAULY M.Sparse iterative closest point[C]//Computer Graphics Forum.Oxford,UK:Blackwell Publishing Ltd,2013:113-123.
[8] BIBER P,STRA?ER W.The normal distributions transform:a new approach to laser scan matching[C]//Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2003),2003:2743-2748.
[9] AGAMENNONI G,FONTANA S,SIEGWART R Y,et al.Point clouds registration with probabilistic data association[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),2016:4092-4098.
[10] YANG H,SHI J,CARLONE L.Teaser:fast and certifiable point cloud registration[J].arXiv:2001.07715,2020.
[11] YANG J,LI H,CAMPBELL D,et al.Go-ICP:a globally optimal solution to 3D ICP point-set registration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(11):2241-2254.
[12] ROSEN D M,CARLONE L,BANDEIRA A S,et al.SE-Sync:a certifiably correct algorithm for synchronization over the special Euclidean group[J].The International Journal of Robotics Research,2019,38(2/3):95-125.
[13] MARON H,DYM N,KEZURER I,et al.Point registration via efficient convex relaxation[J].ACM Transactions on Graphics,2016,35(4):1-12.
[14] IZATT G,DAI H,TEDRAKE R.Globally optimal object pose estimation in point clouds with mixed-integer programming[M]//Robotics research.Cham:Springer,2020:695-710.
[15] QI C R,YI L,SU H,et al.Pointnet++:deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems,2017:5099-5108.
[16] PHAN A V,LE NGUYEN M,NGUYEN Y L H,et al.DGCNN:a convolutional neural network over large-scale labeled graphs[J].Neural Networks,2018,108:533-543.
[17] WU W,QI Z,FUXIN L.Pointconv:deep convolutional networks on 3d point clouds[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:9621-9630.
[18] AOKI Y,GOFORTH H,SRIVATSAN R A,et al.Pointnetlk:robust & efficient point cloud registration using pointnet[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:7163-7172.
[19] QI C R,SU H,MO K,et al.Pointnet:deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:652-660.
[20] LUCAS B D,KANADE T.An iterative image registration technique with an application to stereo vision[C]//Proc 7th Intl Joint Conf on Artificial Intelligence,1981:674-679.
[21] SARODE V,LI X,GOFORTH H,et al.Pcrnet:point cloud registration network using pointnet encoding[J].arXiv:1908.07906,2019.
[22] GELFAND N,MITRA N J,GUIBAS L J,et al.Robust global registration[C]//Symposium on Geometry Processing,2005.
[23] RUSU R B,BLODOW N,BEETZ M.Fast point feature histograms(FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation,2009:3212-3217.
[24] ZENG A,SONG S,NIE?NER M,et al.3dmatch:learning local geometric descriptors from RGB-D reconstructions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1802-1811.
[25] DENG H,BIRDAL T,ILIC S.Ppfnet:global context aware local features for robust 3d point matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:195-205.
[26] DENG H,BIRDAL T,ILIC S.Ppf-foldnet:unsupervised learning of rotation invariant 3d local descriptors[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:602-618.
[27] SCHNEIDER P,EBERLY D H.Geometric tools for computer graphics[M].[S.l.]:Elsevier,2002.
[28] CHANG C T,GORISSEN B,MELCHIOR S.Fast oriented bounding box optimization on the rotation group SO[(3,?)][J].ACM Transactions on Graphics,2011,30(5):1-16.
[29] WU Z,SONG S,KHOSLA A,et al.3d shapenets:a deep representation for volumetric shapes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:1912-1920.