[1] KENNEDY J,EBERHART R.Particle swarm optimization[C]//International Conference on Neural Networks,1995.
[2] 张德惠,游晓明,刘升.融合猫群算法的动态分组蚁群算法[J].计算机科学与探索,2020,14(5):880-891.
ZHANG D H,YOU X M,LIU S.Dynamic grouping ant colony algorithm combined with cat swarm optimization[J].Journal of Frontiers of Computer Science and Technology,2020,14(5):880-891.
[3] 宋杰,许冰,杨淼中.基于自适应步长果蝇优化算法图像分割[J].计算机工程与应用,2020,56(4):184-190.
SONG J,XU B,YANG M Z.Image segmentation based on adaptive step size fruit fly optimization algorithm[J].Computer Engineering and Applications,2020,56(4):184-190.
[4] 杨景明,马明明,车海军,等.多目标自适应混沌粒子群优化算法[J].控制与决策,2015,30(12):2168-2174.
YANG J M,MA M M,CHE H J,et al.Multi-objective adaptive chaos particle swarm optimization algorithm[J].Control and Decision,2015,30(12):2168-2174.
[5] 付绍昌,黄辉先,肖业伟,等.自适应变异粒子群算法在交通控制中的应用[J].系统仿真学报,2007(7):1562-1564.
FU S C,HUANG H X,XIAO Y W,et al.Application of adaptive mutation particle swarm optimization algorithm in traffic control[J].Journal?of?System?Simulation,2007(7):1562-1564.
[6] 赵宏伟,李圣普.基于粒子群算法和RBF神经网络的云计算资源调度方法研究[J].计算机科学,2016,43(3):113-117.
ZHAO H W,LI S P.Research on resources scheduling method in cloud computing based on PSO and RBF neural network[J].Computer Science,2016,43(3):113-117.
[7] SHI Y,EBERHART R C.A modified particle swarm optimizer[C]//Proceedings of the IEEE Congress on Evolutionary Computation,Piscataway,NJ,1998:69-73.
[8] SHI Y,EBERHART R C.Parameters selections in particle swarm optimization[C]//Proceedings of IEEE International Conference on Evolutionary Programming,1998:591-600.
[9] 敖永才,师奕兵,张伟,等.自适应惯性权重的改进粒子群算法[J].电子科技大学学报,2014,43(6):874-880.
AO Y C,SHI Y B,ZHANG W,et al.Improved particle swarm optimization with adaptive inertia weight[J].Journal of University of Electronic Science and Technology of China,2014,43(6):874-880.
[10] 郭巳秋,许廷发,王洪庆,等.改进的粒子群优化目标跟踪方法[J].中国光学,2014(5):759-767.
GUO S Q,XU T F,WANG H Q,et al.Object tracking method based on improved particle swarm optimization[J].Chinese Optics,2014(5):759-767.
[11] 周蓉,李俊,王浩.基于灰狼优化的反向学习粒子群算法[J].计算机工程与应用,2020,56(7):48-56.
ZHOU R,LI J,WANG H.Reverse learning particle swarm optimization based on grey wolf optimization[J].Computer Engineering and Applications,2020,56(7):48-56.
[12] 季伟东,徐浩天,林平.自适应变异粒子群优化算法及在新冠肺炎疫情传播预测中的应用[J].小型微型计算机系统,2021,42(3):472-477.
JI W D,XU H T,LIN P,Adaptive mutation particle swarm optimization and its application in predicting the COVID-19 epidemic transmission[J].Journal of Chinese Computer Systems,2021,42(3):472-477.
[13] 陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006(1):53-56.
CHEN G M,JIA J Y,HAN Q.Study on the strategy of decreasing inertia weight in particle swarm optimization algorithm[J].Journal of Xi’an Jiaotong University,2006(1):53-56.
[14] 闫群民,马瑞卿,马永翔,等.一种自适应模拟退火粒子群优化算法[J].西安电子科技大学学报,2021,48(4):120-127.
YAN Q M,MA R Q,MA Y X,et al.Adaptive simulated annealing particle swarm optimization algorithm[J].Journal of Xidian University,2021,48(4):120-127.
[15] 张其文,尉雅晨.独立自适应调整参数的粒子群优化算法[J].计算机科学与探索,2020,14(4):637-648.
ZHANG Q W,WEI Y C,Particle swarm optimization with independent adaptive parameter adjustment[J].Journal of Frontiers of Computer Science and Technology,2020,14(4):637-648.
[16] 梁田,曹德欣.基于莱维飞行的改进简化粒子群算法[J].计算机工程与应用,2021,57(20):188-196.
LIANG T,CAO D X.Improved and simplified particle swarm optimization algorithm based on Levy flight[J].Computer Engineering and Applications,2021,57(20):188-196.
[17] MCCALL J.Genetic algorithms for modelling and optimisation-ScienceDirect[J].Journal of Computational and Applied Mathematics,2005,184(1):205-222.
[18] 宋威,华子彧.融入社会影响力的粒子群优化算法[J].计算机科学与探索,2020,14(11):1908-1919.
SONG W,HUA Z Y.Particle swarm optimization with social influence[J].Journal of Frontiers of Computer Science and Technology,2020,14(11):1908-1919.
[19] CHATTERJEE A,SIARRY P.Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J].Computers and Operations Research,2006,33(3):859-871.
[20] PHUNG M D,HA Q P.Motion-encoded particle swarm optimization for moving target search using UAVs[J].Applied Soft Computing,2020,97:106705.
[21] 姜建国,田旻,王向前,等.采用扰动加速因子的自适应粒子群优化算法[J].西安电子科技大学学报,2012,39(4):74-80.
JIANG J G,TIAN M,WANG X Q,et al.Adaptive particle swarm optimization via disturbing acceleration coefficients[J].Journal of Xidian University,2012,39(4):74-80.
[22] 滕志军,吕金玲,郭力文,等.基于动态加速因子的粒子群优化算法研究[J].微电子学与计算机,2017,34(12):125-129.
TENG Z J,LV J L,GUO L W,et al.Research on particle swarm optimization based on dynamic acceleration coefficients[J].Microelectronics & Computer,2017,34(12):125-129.
[23] 徐浩天,季伟东,孙小晴,等.基于正态分布衰减惯性权重的粒子群优化算法[J].深圳大学学报(理工版),2020,37(2):208-213.
XU H T,JI W D,SUN X Q,et al.A PSO algorithm with inertia weight decay by normal distribution[J].Journal of Shenzhen University(Science and Engineering),2020,37(2):208-213.
[24] YAN C M,LU G Y,LIU Y T,et al.A modified PSO algorithm with exponential decay weight[C]//2017 13th International Conference on Natural Computation,Fuzzy Systems and Knowledge Discovery(ICNC-FSKD),2018.