Using Adjacent Structure Entropy to Determine Vital Nodes of Hypernetwork
ZHOU Lina, CHANG Xiao, HU Feng
1.College of Computer, Qinghai Normal University, Xining 810008, China
2.Tibetan Information Processing and Machine Translation Key Laboratory of Qinghai Province, Xining 810008, China
3.The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining 810008, China
ZHOU Lina, CHANG Xiao, HU Feng. Using Adjacent Structure Entropy to Determine Vital Nodes of Hypernetwork[J]. Computer Engineering and Applications, 2022, 58(8): 76-82.
[1] NEWMAN M E J.The structure and function of complex networks[J].SIAM Review,2003,45(2):167-256.
[2] KEELING M J,ROHANI P,POURBOHLOUL B.Modeling infectious diseases in humans and animals[J].Clinical Infectious Diseases,2008,47(6):864-865.
[3] LESKOVEC J,ADAMIC L A,HUBERMAN B A.The dynamics of viral marketing[J].Transactions on the Web,2005,1(1):1-40.
[4] CSERMELY P,KORCSMROS T,KISS H J,et al.Structure and dynamics of molecular networks:a novel paradigm of drug discovery:a comprehensive review[J].Pharmacol Ther,2013,138:333-408.
[5] DOROGOVTSEV S N,MENDES J F F.Evolution of networks[J].Advances in Physics,2002,51(4):1079-1187.
[6] STROGATZ S H.Exploring complex networks[J].Nature,2001,410:268-276.
[7] NEUBAUER N,OBERMAYER K.Hyperincident connected components of tagging networks[C]//Proceedings of the 20th ACM Conference on Hypertext and Hypermedia.New York:ACM Press,2009:229-238.
[8] ESTRADA E,RODRíGUEZ-VELáZQUEZ J A.Subgraph centrality and clustering in complex hyper-networks[J].Physica A,2006,364:581-594.
[9] 王志平,王众托.超网络理论及其应用[M].北京:科学出版社,2008:206-222.
WANG Zhiping,WANG Zhongtuo.Hypernetwork theory and its application[M].Beijing:Science Press,2008:206-222.
[10] WANG J W,RONG L L,DENG Q H,et al.Evolving hypernetwork model[J].The European Physocial Journal B,2010,77(4):493-498.
[11] 胡枫,赵海兴,马秀娟.一种超网络演化模型构建及特性分析[J].中国科学:物理学 力学 天文学,2013,43(1):16-22.
HU Feng,ZHAO Haixing,MA Xiujuan.An evolving hypernetwork model and its properties[J].SCIENCE CHINA Physics,Mechanics & Astronomy,2013,43(1):16-22.
[12] SUO Q,GUO J L,SHEN A Z.Information spreading dynamics in hypernetworks[J].Physica A,2018,495:475-487.
[13] SUO Q,GUO J L,SUN S W,et al.Exploring the evolutionary mechanism of complex supply chain systems using evolving hypergraphs[J].Physica A,2018,489:141-148.
[14] 郭进利.非均齐超网络中标度率的涌现—富者愈富导致幂律分布吗?[J].物理学报,2014,63(20):402-407.
GUO Jinli.Emergence of scaling in non-uniform hypernetworks—does “the rich get richer” lead to a power-law distribution?[J].Acta?Physica Sinica,2014,63(20):402-407.
[15] 卢文,赵海兴,孟磊,等.具有双峰特性的双层超网络模型[J].物理学报,2021,70(1):384-392.
LU Wen,ZHAO Haixing,MENG Lei,et al.Double-layer hypernetwork model with bimodal peak characteristics[J].Acta?Physica Sinica,2021,70(1):384-392.
[16] 刘胜久,李天瑞,刘佳,等.超网络能量研究与应用[J].计算机科学与探索,2021,15(4):682-689.
LIU Shengjiu,LI Tianrui,LIU Jia,et al.Research and application of hypernetwork energy[J].Journal of Frontiers of Computer Science & Technology,2020,15(4):682-689.
[17] 马涛,郭进利.基于加权超图的产学研合作申请专利超网络模型——以上海电子信息产业为例[J].技术经济,2019,38(6):109-118.
MA Tao,GUO Jinli.Industry-university-research cooperative hypernetwork model for applying patent based on weighted hypergraph:case of electronic information industry from Shanghai[J].Technology Economics,2019,38(6):109-118.
[18] 陆睿敏,郭进利.上海市公交超网络拓扑特征与鲁棒性分析[J].数学的实践与认识,2018,48(20):129-137.
LU Ruimin,GUO Jinli.Topological characteristics and robustness analysis of Shanghai bus hypernetwork mathematics in practice and theory[J].Mathematics in Practice and Theory,2018,48(20):129-137.
[19] 胡枫,刘猛,赵静,等.蛋白复合物超网络特性分析及应用[J].复杂系统与复杂性科学,2018,15(4):31-38.
HU Feng,LIU Meng,ZHAO Jing,et al.Analysis and application of the topological properties of protein complex hypernetworks[J].Complex Systems and Complexity Science,2018,15(4):31-38.
[20] 王雨,郭进利.超网络视角下的科研合作网络节点重要性评估[J].图书馆杂志,2018,37(10):91-102.
WANG Yu,GUO Jinli.The evaluation of node importance within the scientific collaboration network from hypernetwork perspective[J].Library Journal,2018,37(10):91-102.
[21] 单而芳,蔡蕾,曾晗,等.超网络中心性度量的υ-Position值方法[J].运筹与管理,2020,29(5):135-142.
SHAN Erfang,CAI Lei,ZENG Han,et al.The υ-position value measure on centrality of hypernetworks[J].Operations Research and Management Science,2020,29(5):135-142.
[22] 孙琳,郭进利.基于超网络视角对上海轨道交通网络的研究[J].物流科技,2015,38(4):15-19.
SUN Lin,GUO Jinli.Study of Shanghai rail transit network based on the hypernetwork[J].Logistics Management,2015,38(4):15-19.
[23] SHANNON C E,WEAVER W W.The mathematical theory of communication[J].Physics Today,1950,3(9):31-32.
[24] FEI L,DENG Y.A new method to identify influential nodes based on relative entropy[J].Chaos,Solitons and Fractals,2017,104:257-267.
[25] 黄丽亚,霍宥良,王青,等.基于K-阶结构熵的网络异构性研究[J].物理学报,2019,68(1):347-359.
HUANG Liya,HUO Youliang,WANG Qing,et al.Network heterogeneity based on K-order structure entropy[J].Acta Physica Sinica,2019,68(1):347-359.
[26] 胡钢,徐翔,高浩,等.基于邻接信息熵的网络节点重要性识别算法[J].系统工程理论与实践,2020(3):714-725.
HU Gang,XU Xiang,GAO Hao,et al.Node importance recognition algorithm based on adjacency information entropy in networks[J].Systems Engineering-Theory & Practice,2020(3):714-725.
[27] 李懂,席景科,孙成成.融合度与K核迭代次数的节点重要性排序算法[J].计算机工程与设计,2019,40(6):1518-1522.
LI Dong,XI Jingke,SUN Chengcheng.Node importance ranking algorithm with fusing degree and K-shell iteration number[J].Computer Engineering and Design,2019,40(6):1518-1522.
[28] 王倩,胡松旺,郭嘉伟,等.有向复杂网络结构熵的软件动态执行关键节点挖掘算法[J].小型微型计算机系统,2019,40(4):884-889.
WANG Qian,HU Songwang,GUO Jiawei,et al.Structure entropy of directed complex network based key node mining algorithm in software dynamic execution[J].Mini-micro Systems,2019,40(4):884-889.
[29] BERGE C.Graphs and hypergraphs[M].New York:Elsevier,1973.
[30] 谭跃进,吴俊.网络结构熵及其在非标度网络中的应用[J].系统工程理论与实践,2004(6):24-26.
TAN Yuejin,WU Jun.Network structure entropy and its application to scale-free networks[J].Systems Engineering—Theory & Practice,2004(6):24-26.