Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (24): 135-137.DOI: 10.3778/j.issn.1002-8331.2010.24.041
• 数据库、信号与信息处理 • Previous Articles Next Articles
CHEN Li1,CHEN Jing1,GAO Xin-tao2,WANG Lai-sheng1
Received:
Revised:
Online:
Published:
Contact:
陈 丽1,陈 静1,高新涛2,王来生1
通讯作者:
Abstract: When Support Vector Machine(SVM) is used to solve the classification problems,the samples nearby the SVM hyperplanes are more easily misclassified.To solve this problem,the Reverse K-Nearest Neighbor method is introduced into the classification problems,and the Reverse K-Nearest Neighbor classification method(RKNN) is presented.And then,a new classification algorithm based on Support Vector Machine and Reverse K-Nearest Neighbor classification method(SVM-RKNN) is presented.At last,in order to avoid the one-sidedness problems which may be produced by one single classifier,the multi-fusion method based on SVM-RKNN is presented.The experimental results show that the average forecast accuracy of the SVM-RKNN method increases 2.13% than the SVM method,and the average forecast accuracy of the multi-fusion method based on SVM-RKNN increases 2.54% and 0.41% than the SVM and SVM-RKNN method respectively.
摘要: 针对支持向量机在对样本进行分类时,决策超平面附近的点较易错分的问题,首先将反K近邻法引入分类问题,提出了反K近邻分类算法;然后,将支持向量机(SVM)与反K近邻分类算法(RKNN)相结合,提出了基于支持向量机与反K近邻的分类算法(SVM-RKNN);最后,为了避免单一分类器可能存在的片面性问题,提出了基于SVM-RKNN的多特征融合分类方法。实验结果表明:SVM-RKNN分类算法的分类准确率比SVM方法平均提高了2.13%,而基于SVM-RKNN的多特征融合分类算法的分类准确率分别比SVM和SVM-RKNN算法平均提高了2.54%和0.41%。
CLC Number:
TP181
CHEN Li1,CHEN Jing1,GAO Xin-tao2,WANG Lai-sheng1. Classification algorithm research based on support vector machine and reverse K-nearest neighbor[J]. Computer Engineering and Applications, 2010, 46(24): 135-137.
陈 丽1,陈 静1,高新涛2,王来生1. 基于支持向量机与反K近邻的分类算法研究[J]. 计算机工程与应用, 2010, 46(24): 135-137.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2010.24.041
http://cea.ceaj.org/EN/Y2010/V46/I24/135
YANG Peng1,2,CHAI Xiaoyan3,SUN Junqing1,2