Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (18): 35-37.DOI: 10.3778/j.issn.1002-8331.2010.18.012

• 研究、探讨 • Previous Articles     Next Articles

Double swarm variation particle swarm optimization

PENG Xin,MA Lin-hua,WANG Jun-pan,SU Qiang   

  1. Department of Aeronautical Electronics Engineering,Engineering College,Air Force Engineering University,Xi’an 710038,China
  • Received:2009-01-07 Revised:2009-03-25 Online:2010-06-21 Published:2010-06-21
  • Contact: PENG Xin

双种群变异粒子群算法

彭 鑫,马林华,王俊攀,苏 强   

  1. 空军工程大学 工程学院 航空电子工程系,西安 710038
  • 通讯作者: 彭 鑫

Abstract: By the usage of the aberrance mechanism’s character of enhancing the global optimization-searching abilities,a Double swarm Variation Particle Swarm Optimization(DVPSO) algorithm based on the fast convergence of the PSO algorithm whose inertia-value is linearly descending is presented.The algorithm is contrasted with other PSO algorithm,and the simulation result shows that its performance is excellent.

Key words: Double swarm Variation Particle Swarm Optimization(DVPSO), Auto-adapted Escaping Particle Swarm Optimization(AEPSO), genetic algorithm

摘要: 利用变异机制可以增加遗传算法全局寻优能力的特性,结合惯性权值线性递减PSO算法具有较快收敛速度的优点,提出了一种双种群变异PSO算法,对该算法与其他PSO算法进行了比较,仿真结果表明其性能优越。

关键词: 双种群变异粒子群算法(DVPSO), 自适应逃逸粒子群算法(AEPSO), 遗传算法

CLC Number: