Computer Engineering and Applications ›› 2021, Vol. 57 ›› Issue (21): 87-94.DOI: 10.3778/j.issn.1002-8331.2010-0007

Previous Articles     Next Articles

Optimization and Application of Cauchy Mutation Camel Algorithm

REN Chunhui, LIU Sheng, ZHANG Weikang, ZHANG Weiwei   

  1. College of Management, Shanghai University of Engineering Sciences, Shanghai 201620, China
  • Online:2021-11-01 Published:2021-11-04

柯西变异的骆驼算法优化与应用

任春慧,刘升,张伟康,张微微   

  1. 上海工程技术大学 管理学院,上海 201620

Abstract:

In order to solve the problems of Camel Algorithm(CA) in low execution efficiency and local optimal stagnation, an Modified Camel Algorithm(MCA) is proposed in this paper. The algorithm is based on camel’s traveling behavior, and by introducing Cauchy distribution function at the global position to carry out variation, the binding force of individual by local extremum point is reduced, and the local optimization ability is improved. The result is a reduction in the number of set parameters used in the original algorithm, a higher calculation speed and a simplified structure. The low-dimensional and high-dimensional tests are compared between MCA, CA, Crow Searching Algorithm(CSA) and Particle Swarm Optimization(PSO) through standard test function. The experimental results show that the improved algorithm has better operation efficiency and optimization ability. The performance of MCA is verified by optimizing the constrained engineering application, namely, anti-interference smart antenna optimization. This algorithm can make the antenna system reach the determined direction to eliminate the interference signal perfectly and improve the accuracy, speed and stability in practical application.

Key words: meta-heuristic optimization camel algorithm, camel traveling behavior, Cauchy mutation, anti-jamming smart antenna optimization

摘要:

针对骆驼算法(Camel Algorithm,CA)在执行效率低及易陷入局部最优停滞等问题,提出了改进的骆驼算法(Modified Camel Algorithm,MCA)。该算法基于骆驼的行进行为,通过在全局位置处引入柯西分布函数进行变异,使得个体受局部极值点约束力下降,提高局部寻优能力,减少原始算法中使用的设置参数的数量,具有较高的计算速度和简化的结构。通过标准测试函数对MCA与CA,乌鸦搜索算法(Crow Searching Algorithm,CSA)和粒子群优化算法(Particle Swarm Optimization,PSO)进行低维与高维测试对比,实验结果表明该改进算法表现出更好的运行效率和寻优能力。通过优化受约束的工程应用即抗干扰智能天线优化来验证MCA的性能,该算法能够使天线系统到达确定的方向来完美消除干扰信号,提高在实际应用中的精度、速度与稳定性。

关键词: 元启发式优化骆驼算法, 骆驼行进行为, 柯西变异, 抗干扰智能天线优化