Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (12): 208-211.DOI: 10.3778/j.issn.1002-8331.2009.12.067

• 工程与应用 • Previous Articles     Next Articles

Application particle swarm optimization in computer aided selective assembly

ZHANG Dong1,CHANG Zhi-yong1,MO Rong1,XU Sha-sha2   

  1. 1.The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology,Northwestern Polytechnical University, Xi’an 710072,China
    2.Computation Center,Xi’an Communication Institute,Xi’an 710106,China
  • Received:2008-03-06 Revised:2008-05-20 Online:2009-04-21 Published:2009-04-21
  • Contact: ZHANG Dong

粒子群算法在计算机辅助选择装配中的应用

张 栋1,常智勇1,莫 蓉1,徐莎莎2   

  1. 1.西北工业大学 现代设计与集成制造技术教育部重点实验室,西安 710072
    2.西安通信学院 计算中心,西安 710106
  • 通讯作者: 张 栋

Abstract: In order to improve the precision of assembly,Computer Aided Selective Assembly can achieve this target.This article proposes a new selective assembly model used in multi-dimension chains and contrasts different multi-object optimization algorithms when they are applied on Computer Aided Selective Assembly.Based on PSO,an improved PSO algorithm is designed to solve the problem of multi-objective optimization.In the improved algorithm,authors use an external collection to update the solutions,assure the algorithm can better converge near the true Pareto-optimal front and ensure the distributing of solutions is better equality.Finally,a fact proves that this model and algorithm can efficiently solve the selective assembly problem.

Key words: selective assembly, multi-objective optimization, Particle Swarm Optimization(PSO), quality loss cost

摘要: 为了提高装配的精度,可以使用计算机辅助选择装配来选择合适的零件进行装配。提出了一种面向多尺寸链计算机辅助选择装配模型;对比了几种多目标优化算法应用在计算机辅助选择装配中的优缺点;最终选择一种以粒子群优化算法为基础的多目标优化算法,在算法中通过使用外部集的不断更新来保证算法收敛到全局最优解。实例证明,随着迭代次数的增加,外部集中的解逐渐收敛于pareto前沿,而且解的分布比较均匀。

关键词: 选择装配, 多目标优化, 粒子群优化算法, 质量损失