Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (8): 246-248.DOI: 10.3778/j.issn.1002-8331.2009.08.074

• 工程与应用 • Previous Articles    

Engine condition monitoring based on grey auto-regressive combination model

WANG Qiang,DAI Sheng-hui   

  1. School of Information Engineering,Eost China Institute of Technology,Fuzhou,Jiangxi 344000,China
  • Received:2008-01-04 Revised:2008-04-15 Online:2009-03-11 Published:2009-03-11
  • Contact: WANG Qiang

灰色理论与时序模型的发动机状态监测分析

王 强,戴晟晖   

  1. 东华理工大学 信息工程学院,江西 抚州 344000
  • 通讯作者: 王 强

Abstract: Aiming at the problems of the wear condition monitoring,grey theory and auto-regressive combination forecasting model was put forward,and the combination model was build.The rough trend of the wear particle content change can be reflected through grey theory,and the detail of the change can be reflected through auto-regressive model.By testing and comparing a set of Ferro graphic data,the result shows that the combination model has a better forecasting result.

Key words: grey theory, auto-regressive model, condition monitoring

摘要: 针对目前发动机磨损状态监测中磨粒数量预测方法存在的问题,提出了基于灰色理论与时序模型相结合的预测方法,建立了灰色时序组合模型.通过灰色GM(1,1)模型模拟数据宏观变化趋势,并用时序AR(P)模型建立了残差序列以模拟数据微观变化趋势.通过对实测数据进行检验与比较,证明该组合模型在发动机状态监测中具有更好的预报效果.

关键词: 灰色理论, 时序模型, 状态监测