[1] KALIYAR R K, GOSWAMI A, NARANG P. FakeBERT: fake news detection in social media with a BERT-based deep learning approach[J]. Multimedia Tools and Applications, 2021, 80(8): 11765-11788.
[2] MIN E X, RONG Y, BIAN Y T, et al. Divide-and-conquer: post-user interaction network for fake news detection on social media[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 1148-1158.
[3] SUN L, RAO Y, LAN Y Q, et al. HG-SL: jointly learning of global and local user spreading behavior for fake news early detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(4): 5248-5256.
[4] 强子珊, 顾益军. 融合动态传播和社区结构的社交媒体谣言检测模型[J]. 计算机工程与应用, 2024, 60(18): 198-207.
QIANG Z S, GU Y J. Rumor detection model based on dynamic propagation and community structure[J]. Computer Engineering and Applications, 2024, 60(18): 198-207.
[5] HU B Z, SHENG Q, CAO J, et al. Bad actor, good advisor: exploring the role of large language models in fake news dete-ction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(20): 22105-22113.
[6] WEI J, WANG X Z, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems, 2024: 24824-24837.
[7] ZHANG X, GAO W. Towards LLM-based fact verification on news claims with a hierarchical step-by-step prompting method[C]//Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 996-1011.
[8] HUANG Y, SUN L. Harnessing the power of ChatGPT in fake news: an in-depth exploration in generation, detection and explanation[J]. arXiv:2310.05046, 2023.
[9] 胡杨, 王啸. 什么是“真实”: 数字媒体时代受众对假新闻的认知与辨识[J]. 新闻记者, 2019(8): 4-14.
HU Y, WANG X. What is “truth”: audience’s cognition and identification of fake news in the digital media era[J]. Shanghai Journalism Review, 2019(8): 4-14.
[10] PéREZ-ROSAS V, KLEINBERG B, LEFEVRE A, et al. Automatic detection of fake news[C]//Proceedings of the 27th International Conference on Computational Linguistics, 2018: 3391-3401.
[11] PELRINE K, IMOUZA A, THIBAULT C, et al. Towards reliable misinformation mitigation: generalization, uncertainty, and GPT-4[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 6399-6429.
[12] CHEN C Y, SHU K. Can LLM-generated misinformation be detected?[J]. arXiv:2309.13788, 2023.
[13] JIANG B H, TAN Z, NIRMAL A, et al. Disinformation det-ection: an evolving challenge in the age of LLMs[J]. arXiv:2309.15847, 2023.
[14] LIU H, WANG W Y, LI H R, et al. TELLER: a trustworthy framework for explainable, generalizable and controllable fake news detection[J]. arXiv:2402.07776, 2024.
[15] LEITE J A, RAZUVAYEVSKAYA O, BONTCHEVA K, et al. Detecting misinformation with LLM-predicted credibility signals and weak supervision[J]. arXiv:2309.07601, 2023.
[16] WANG H R, SHU K. Explainable claim verification via knowledge-grounded reasoning with large language models[C]//Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 6288-6304.
[17] LI X Y, ZHANG Y F, MALTHOUSE E C. Large language model agent for fake news detection[J]. arXiv:2405.01593, 2024.
[18] GUO T C, CHEN X Y, WANG Y Q, et al. Large language model based multi-agents: a survey of progress and challenges[J]. arXiv:2402.01680, 2024.
[19] CHAN C M, CHEN W Z, SU Y S, et al. ChatEval: towards better LLM-based evaluators through multi-agent debate[J]. arXiv:2308.07201, 2023.
[20] DU Y L, LI S, TORRALBA A, et al. Improving factuality and reasoning in language models through multiagent debate[J]. arXiv:2305.14325, 2023.
[21] WANG Q N, WANG Z H, SU Y, et al. Rethinking the bounds of LLM reasoning: are multi-agent discussions the key? [J]. arXiv:2402.18272, 2024.
[22] LIANG T, HE Z W, JIAO W X, et al. Encouraging divergent thinking in large language models through multi-agent debate[J]. arXiv:2305.19118, 2023.
[23] WANG Y X, WU Z Y, YAO J F, et al. TDAG: a multi-agent framework based on dynamic task decomposition and agent generation[J]. arXiv:2402.10178, 2024.
[24] QIAN C, LIU W, LIU H Z, et al. ChatDev: communicative agents for software development[J]. arXiv:2307.07924, 2023.
[25] HONG S R, ZHUGE M C, CHEN J Q, et al. MetaGPT: meta programming for a multi-agent collaborative framework[J]. arXiv:2308.00352, 2023.
[26] XU Z L, YU C, FANG F, et al. Language agents with reinforcement learning for strategic play in the werewolf game[J]. arXiv:2310.18940, 2023.
[27] WANG S Z, LIU C, ZHENG Z L, et al. Avalon’s game of thoughts: battle against deception through recursive contemplation[J]. arXiv:2310.01320, 2023.
[28] CHU Z, CHEN J C, CHEN Q L, et al. A survey of chain of thought reasoning: advances, frontiers and future[J]. arXiv:2309.15402, 2023.
[29] XIONG K, DING X, CAO Y X, et al. Examining inter-consistency of large language models collaboration: an in-depth analysis via debate[C]//Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 7572-7590.
[30] CHOUDHRY A, KHATRI I, JAIN M, et al. An emotion-aware multitask approach to fake news and rumor detection using transfer learning[J]. IEEE Transactions on Computational Social Systems, 2024, 11(1): 588-599.
[31] NAN Q, SHENG Q, CAO J, et al. Let silence speak: enhan-cing fake news detection with generated comments from large language models[C]//Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. New York: ACM, 2024: 1732-1742.
[32] WAN H R, FENG S B, TAN Z X, et al. DELL: generating reactions and explanations for LLM-based misinformation detection[C]//Findings of the Association for Computational Linguistics: ACL 2024. Stroudsburg: ACL, 2024: 2637-2667.
[33] Anthropic. The Claude 3 model family: Opus, Sonnet, Haiku[EB/OL]. [2024-08-04]. https://www-cdn.anthropic.com/de8ba-9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_
3.pdf. |