计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (22): 183-195.DOI: 10.3778/j.issn.1002-8331.2408-0259

• 模式识别与人工智能 • 上一篇    下一篇

多维度多智能体分组讨论的虚假新闻检测方法

许旻辰,屈丹,司念文,彭思思,刘云鹏   

  1. 1.信息工程大学 信息系统工程学院,郑州 450001
    2.先进计算与智能工程(国家级)实验室,郑州 450001
    3.清华大学 电子工程系,北京 100084
  • 出版日期:2025-11-15 发布日期:2025-11-14

Multi-Dimensional and Multi-Agent Group Discussion Method for Fake News Detection

XU Minchen, QU Dan, SI Nianwen, PENG Sisi, LIU Yunpeng   

  1. 1.School of Information Systems Engineering, Information Engineering University, Zhengzhou 450001, China
    2.Laboratory for Advanced Computing and Intelligence Engineering, Zhengzhou 450001, China
    3.Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • Online:2025-11-15 Published:2025-11-14

摘要: 大语言模型技术的快速发展使其在虚假新闻检测任务中展现出巨大应用潜力。但由于虚假新闻检测的推理复杂度较高,现有方法难以准确实现推理判断。模拟人对新闻的多维度感知过程,提出了一种多维度多智能体分组讨论的虚假新闻检测框架。通过子任务分解将虚假新闻检测分解为三个单选形式的阅读理解子任务,降低了推理过程难度,并设计多智能体分组讨论策略执行子任务,最终通过软分类打分,总结对比不同观点的子任务结果完成检测分类。该方法在FAKENEWSAMT和CELEBRITY数据集中的F1值分别为0.943和0.878,相较于以往基于大模型的检测方法具有更优的检测性能。

关键词: 多智能体, 虚假新闻检测, 大语言模型, 自然语言处理

Abstract: The rapid development of large language model technology has shown great potential for application in fake news detection tasks. However, due to the high complexity of reasoning involved in fake news detection, existing methods struggle to accurately perform inferential judgments. This paper simulates the multi-dimensional perception of news by humans and proposes a fake news detection method based on multi-dimensional and multi-agent group discussions. This framework breaks down fake news detection into three multiple-choice reading comprehension sub-tasks, thereby reducing the difficulty of the reasoning process. It designs a multi-agent group discussion strategy to execute subtasks, and uses soft classification scoring to summarize and compare the subtask results of different viewpoints to complete the final classification. This method achieves F1 scores of 0.943 and 0.878 on the FAKENEWSAMT and CELEBRITY datasets, respectively, demonstrating superior detection performance compared to previous detection methods based on large language models.

Key words: multi-agent, fake news detection, large language model, natural language processing