计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (22): 55-74.DOI: 10.3778/j.issn.1002-8331.2503-0065

• 热点与综述 • 上一篇    下一篇

动态环境中具身智能机器人三维激光SLAM研究综述

李经丹,于军琪,冯春勇,王奔,王楷文,伍勇华   

  1. 1.西安建筑科技大学 建筑设备科学与工程学院,西安 710055 
    2.西安建筑科技大学 机电工程学院,西安 710055
    3.西安建筑科大工程技术有限公司,西安 710055
  • 出版日期:2025-11-15 发布日期:2025-11-14

Review of 3D LiDAR SLAM Research for Embodied Intelligent Robots in Dynamic Environments

LI Jingdan, YU Junqi, FENG Chunyong, WANG Ben, WANG Kaiwen, WU Yonghua   

  1. 1.School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    2.School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    3.XAUAT Engineering Technology Co., Ltd., Xi’an 710055, China
  • Online:2025-11-15 Published:2025-11-14

摘要: 同时定位与建图(simultaneous localization and mapping,SLAM)是具身智能机器人实现环境交互与自主决策的关键技术,目前基于三维激光雷达的SLAM算法大都是基于静态环境的,而动态物体的存在会导致激光SLAM算法的定位和建图精度降低。基于此问题,详细阐述了国内外学者对动态激光SLAM算法的相关研究。根据动态物体检测原理的不同,将去除动态物体的方法分为基于语义分割、基于光线追踪、基于可见性等,并分析了每种方法的主要思想以及相关应用算法;对不同动态程度的物体进行了分类,总结了激光SLAM框架中不同类别动态物体对应的处理策略,并介绍了在线实时处理、离线后处理、终身SLAM策略的难点以及主流算法;归纳了动态激光SLAM算法主要的精度评价指标以及数据集;对动态激光SLAM算法未来的发展趋势进行了展望。

关键词: 动态环境, 具身智能机器人, 激光SLAM, 动态物体去除

Abstract: Simultaneous localization and mapping (SLAM) is a key technology for ambient interaction and autonomous decision-making in embodied intelligent robots, and most of the current SLAM algorithms based on 3D LiDAR are based on static environments, whereas the presence of dynamic objects will lead to a reduction in the localization and mapping accuracy of LiDAR SLAM algorithms. Based on this issue, the relevant research on dynamic LiDAR SLAM algorithms by scholars at home and abroad is elaborated in detail. According to the different principles of dynamic object detection, the methods of removing dynamic objects are classified into semantic segmentation-based, ray tracing-based, visibility-based, etc. , and the main ideas and related application algorithms of each method are analyzed. The objects with different degrees of dynamics are classified, and the processing strategies corresponding to the different categories of dynamic objects in the LiDAR SLAM framework are summarized, and the difficulties and mainstream algorithms of online real-time processing, offline post-processing, lifelong SLAM strategies are introduced. The main accuracy evaluation indexes and datasets of dynamic LiDAR SLAM algorithms are also outlined. The future development trend of dynamic LiDAR SLAM algorithms is outlooked.

Key words: dynamic environment, embodied intelligent robots, LiDAR SLAM, dynamic object removal