计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (23): 329-339.DOI: 10.3778/j.issn.1002-8331.2408-0379

• 工程与应用 • 上一篇    下一篇

融合高斯混合滤波的实时动态视觉惯性SLAM算法

王昱东,武和雷,徐雪松   

  1. 1.南昌大学 信息工程学院,南昌 330031 
    2.华东交通大学 电气工程学院,南昌 330013
  • 出版日期:2025-12-01 发布日期:2025-12-01

Real-Time Dynamic Visual-Inertial SLAM Algorithm Integrated with Gaussian Mixture Filtering

WANG Yudong, WU Helei, XU Xuesong   

  1. 1.School of Information Engineering, Nanchang University, Nanchang 330031, China
    2.School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China
  • Online:2025-12-01 Published:2025-12-01

摘要: 针对动态环境中同时定位与建图(SLAM)鲁棒性差、精度低及实时性弱的问题,提出一种融合高斯混合滤波的视觉惯性SLAM算法。通过对惯性测量单元(IMU)使用误差状态卡尔曼滤波(ESKF),估计出相机的先验旋转状态,利用设计的空间筛分器算法,由相机先验旋转状态与图像特征点坐标,计算出特征点位移,并对其进行高斯分布筛分,获得初始期望及其方差,再引入高斯混合模型,优化各高斯分布,生成对应的特征点簇,通过提出的最优静态簇滤波策略,获得稳定的静态特征点簇,从而估计出准确的相机位姿。在动态场景数据集TUM-RGBD与VCU-RVI上的实验结果表明,与VINS-Mono及其动态环境改进型相比,该算法在大部分数据集上表现良好,绝对轨迹误差中的均方根误差精度较VINS-Mono平均提高了92%,且满足实时性要求,对SLAM研究与机器人自主导航具有借鉴作用和潜在的应用价值。

关键词: 同时定位与建图(SLAM), 动态环境, 惯性测量单元, 误差状态卡尔曼滤波, 高斯混合滤波

Abstract: Regarding simultaneous localization and mapping (SLAM) with poor robustness, low accuracy and weak real-time performance in dynamic environment, a visual inertial SLAM algorithm integrating Gaussian mixture filtering is proposed. Initially, the visual feature point displacement is calculated by designed spatial sifter from the visual points coordinate and the camera prior rotation estimated by error state Kalman filter (ESKF) used on inertial measurement unit (IMU). Subsequently, the Gaussian distribution of feature points is sieved to obtain the initial expectation and its variance, and the Gaussian mixture model is introduced to optimize each Gaussian distribution and generate the corresponding feature point clusters. Afterwards, the optimal static cluster filtering strategy is proposed to obtain the stable static feature point cluster and estimate the accurate camera pose. The experimental results based on TUM-RGBD and VCU-RUI dynamic landmark dataset show that the proposed method has better performance than VINS-Mono and its improvement in most dataset. It achieves an average enhancement of 92% in root mean square error of absolute trajectory error compared to VINS-Mono, meets real-time requirements, and has reference and potential applications for SLAM research and autonomous robot navigation.

Key words: simultaneous localization and mapping (SLAM), dynamic environment, inertial measurement unit, error state Kalman filter, Gaussian mixture filter