计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (22): 36-54.DOI: 10.3778/j.issn.1002-8331.2501-0086

• 热点与综述 • 上一篇    下一篇

基于神经网络的机器翻译研究综述

马潇,田永红,赵伟   

  1. 内蒙古工业大学 数据科学与应用学院,呼和浩特 010080
  • 出版日期:2025-11-15 发布日期:2025-11-14

Review of Neural Network-Based Machine Translation Research

MA Xiao, TIAN Yonghong, ZHAO Wei   

  1. College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China
  • Online:2025-11-15 Published:2025-11-14

摘要: 随着计算机技术的进步,机器翻译已成为实现跨语言沟通的关键工具,其发展历程可分为基于规则的机器翻译、基于统计的机器翻译以及基于深度学习的神经机器翻译。聚焦于大语言模型在翻译领域的应用与创新,全面回顾并系统性梳理了神经机器翻译(neural machine translation,NMT)的最新进展。从早期的循环神经网络到卷积神经网络,再到当前广泛应用的Transformer模型及其变体,概述了机器翻译的演进历程,分析了NMT的主流架构发展。深入剖析了大语言模型翻译的三个关键维度,系统比较了全参数微调与高效参数微调等技术在翻译任务上的差异性表现;详细探讨了多语言大模型翻译技术、零样本与少样本跨语言迁移的技术挑战与解决方案;全面综述了知识图谱增强、领域专业知识融合及多模态知识融合的大模型翻译方法;介绍了机器翻译的评价指标与常用数据集,并对低资源语言翻译提升、可解释与可控翻译系统、跨文化适应性翻译、计算资源优化以及隐私保护与安全可控等方向的研究前景进行了展望。

关键词: 神经机器翻译, 大语言模型, 参数微调, 多语言机器翻译, 低资源语言翻译, 知识图谱增强

Abstract: With the advancement of computer technology, machine translation has become a key tool for cross-language communication. Its development process can be divided into rule-based machine translation, statistics-based machine translation, and deep learning-based neural machine translation. Focusing on the application and innovation of large language models in the field of translation, this paper comprehensively reviews and systematically sorts out the latest developments of neural machine translation (NMT). The evolution of machine translation is summarized, and the mainstream architecture development of NMT is analyzed, from the early recurrent neural network to the convolutional neural network, and then to the widely used Transformer model and its variants. Three key dimensions of large language model translation are deeply analyzed, and the differences between full parameter fine-tuning and efficient parameter fine-tuning in translation tasks are systematically compared. The technical challenges and solutions of multilingual large model translation technology, zero-sample and few-sample cross-language transfer are discussed in detail. The large-scale model translation methods of knowledge graph enhancement, domain professional knowledge fusion and multi-modal knowledge fusion are comprehensively reviewed. In addition, the evaluation indicators and commonly used datasets of machine translation are introduced, and the research prospects of low-resource language translation promotion, interpretable and controllable translation systems, cross-cultural adaptive translation, computing resource optimization, privacy protection and security controllability are discussed.

Key words: neural machine translation, large language models, parameter fine-tuning, multilingual machine translation, low-resource language translation, knowledge graph enhancement