
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (22): 75-91.DOI: 10.3778/j.issn.1002-8331.2501-0412
王红,康玲,郭雨林
出版日期:2025-11-15
发布日期:2025-11-14
WANG Hong, KANG Ling, GUO Yulin
Online:2025-11-15
Published:2025-11-14
摘要: 高维且计算昂贵的优化问题广泛存在于能源与资源优化、城市与环境、工业设计与制造、航空航天及通信与信息等领域。维度的增长带来搜索空间的扩大,计算昂贵限制真实解的评价次数,使得原有的优化算法失效。基于代理的元启发算法,使用代理模型替代昂贵的真实函数适应度评估,借助元启发算法指导优化方向,可以在保持优化精度的同时显著减少计算时间和成本。针对工程应用中优化问题高维且计算昂贵的特点,从初始样例点生成、代理模型构建与更新、进化算法使用、探索与开发平衡、自适应性设计、实际应用几个角度对近年基于代理的元启发算法文献进行整理,归纳总结基于代理的元启发算法如何应对这两大挑战。最后就目前研究不充分的问题,给出了未来发展方向。
王红, 康玲, 郭雨林. 支持代理的元启发算法解决高维计算昂贵问题研究综述[J]. 计算机工程与应用, 2025, 61(22): 75-91.
WANG Hong, KANG Ling, GUO Yulin. Review of Surrogate-Assisted Meta-Heuristic?Algorithms for High-Dimensional Computationally Expensive Optimization Problems[J]. Computer Engineering and Applications, 2025, 61(22): 75-91.
| [1] SI L C, ZHANG X Y, TIAN Y, et al. Linear subspace surrogate modeling for large-scale expensive single/multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2025, 29(3): 697-710. [2] ZHANG J L, WEI L X, GUO Z Y, et al. A survey of meta-heuristic algorithms in optimization of space scale expansion[J]. Swarm and Evolutionary Computation, 2024, 84: 101462. [3] LI J Y, ZHAN Z H, ZHANG J. Evolutionary computation for expensive optimization: a survey[J]. Machine Intelligence Re-search, 2022, 19(1): 3-23. [4] HORAGUCHI Y, NISHIHARA K, NAKATA M. Evolutionary multiobjective optimization assisted by scalarization function approximation for high-dimensional expensive problems[J]. Swarm and Evolutionary Computation, 2024, 86(4): 101516. [5] CHENG R, JIN Y C, OLHOFER M, et al. Test problems for large-scale multiobjective and many-objective optimization[J]. IEEE Transactions on Cybernetics, 2017, 47(12): 4108-4121. [6] DONG H C, DONG Z M. Surrogate-assisted grey wolf optimization for high-dimensional, computationally expensive black-box problems[J]. Swarm and Evolutionary Computation, 2020, 57: 100713. [7] WU X F, LIN Q Z , LI J Q, et al. An ensemble surrogate-based coevolutionary algorithm for solving large-scale expensive optimization problems[J]. IEEE Transactions on Cybernetics, 2022, 53(9): 5854-5866. [8] SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization[J]. Natural Computing, 2005: 341-357. [9] TANG K, LI X, SUGANTHAN P N, et al. Benchmark functions for the CEC 2010 special session and competition on large-scale global optimization[C]//Proceedings of the 2010 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2010. [10] LI X, TANG K, OMIDVAR M N, et al. Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization[J]. Gene, 2013, 7(33): 8. [11] LIANG J J, QU B Y, SUGANTHAN P N. Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization[C]//Proceedings of the 2013 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2013. [12] CHENG R, LI M, TIAN Y, et al. Benchmark functions for the CEC 2017 competition on evolutionary many-objective optimization[C]//Proceedings of the 2017 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2017. [13] DEB K. Multi-objective genetic algorithms: problem difficulties and construction of test problems[J]. Evolutionary Computation, 1999, 7(3): 205-230. [14] HUBAND S, HINGSTON P, BARONE L, et al. A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477-506. [15] DEB K, THIELE L, LAUMANNS M, et al. Scalable multi-objective optimization test problems[C]//Proceedings of the 2002 Congress on Evolutionary Computation. Piscataway: IEEE, 2002: 825-830. [16] CHEN H, LI W K, CUI W C. Surrogate-assisted evolutionary algorithm with hierarchical surrogate technique and adaptive infill strategy[J]. Expert Systems with Applications, 2023, 232: 120826. [17] BAI F S, ZOU D C, WEI Y T. A surrogate-assisted evolutionary algorithm with clustering-based sampling for high-dimensional expensive blackbox optimization[J]. Journal of Global Optimization, 2024, 89(1): 93-115. [18] LIU H T, WANG C H. SEAMS: a surrogate-assisted evolutionary algorithm with metric-based dynamic strategy for expensive multi-objective optimization[J]. Expert Systems with Applications, 2025, 265: 126050. [19] ZHEN H X, GONG W Y, WANG L, et al. Two-stage data-driven evolutionary optimization for high-dimensional expensive problems[J]. IEEE Transactions on Cybernetics, 2023, 53(4): 2368-2379. [20] CHU S C, DU Z G, PENG Y J, et al. Fuzzy hierarchical surrogate assists probabilistic particle swarm optimization for expensive high dimensional problem[J]. Knowledge-Based Systems, 2021, 220: 106939. [21] YU H B, TAN Y, ZENG J C, et al. Surrogate-assisted hierarchical particle swarm optimization[J]. Information Sciences, 2018, 454/455: 59-72. [22] HUANG T, NIU B B, GONG Y J, et al. An efficient history-guided surrogate models-assisted niching evolutionary algorithm for expensive multimodal optimization[J]. Swarm and Evolutionary Computation, 2025, 95: 101906. [23] YAN Z Y, ZHOU Y R, SU C P, et al. Multiple surrogates-assisted evolutionary algorithm for high-dimensional expensive multi-objective optimization with adaptive diffusion map[J]. Expert Systems with Applications, 2025, 266: 126103. [24] LIU Y C, LIU J C, JIN Y C. Surrogate-assisted multipopul-ation particle swarm optimizer for high-dimensional expensive optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(7): 4671-4684. [25] WU M T, WANG L L, XU J, et al. Multiobjective ensemble surrogate-based optimization algorithm for groundwater optimization designs[J]. Journal of Hydrology, 2022, 612: 128159. [26] DAI R, JIE J, WANG Z, et al. Automated surrogate-assisted particle swarm optimizer with an adaptive parental guidance strategy for expensive engineering optimization problems[J]. Journal of Computational Design and Engineering, 2025, 12(3): 145-183. [27] LIU Y H, YANG Z, JIANG C, et al. A surrogate-assisted differential evolution for high-dimensional expensive constrained optimization problems with mixed-integer variables[J]. Expert Systems with Applications, 2025, 272: 126729. [28] FAN C D, HOU B, ZHENG J H, et al. A surrogate-assisted particle swarm optimization using ensemble learning for expensive problems with small sample datasets[J]. Applied Soft Computing, 2020, 91: 106242. [29] LI J Y, ZHAN Z H, WANG H, et al. Data-driven evolutionary algorithm with perturbation-based ensemble surrogates[J]. IEEE Transactions on Cybernetics, 2021, 51(8): 3925-3937. [30] TSATTALIOS S, TSOUKALAS I, DIMAS P, et al. Advancing surrogate-based optimization of time-expensive environmental problems through adaptive multi-model search[J]. Environmental Modelling & Software, 2023, 162(4): 105639. [31] PAN J S, ZHANG L G, CHU S C, et al. Surrogate-assisted hybrid meta-heuristic algorithm with an add-point strategy for a wireless sensor network[J]. Entropy, 2023, 25(2): 317. [32] WANG L, FAN Q Q, YAN X F. A surrogate archive assisted multi-objective evolutionary algorithm under limited computational budget[J]. Soft Computing, 2025, 29(2): 723-753. [33] REN X Q, WANG H L, HU H Y, et al. Weighted committee-based surrogate-assisted differential evolution framework for efficient medium-scale expensive optimization[J]. International Journal of Machine Learning and Cybernetics, 2025, 7(4): 1-18. [34] REN Z H, SUN C L, TAN Y, et al. A bi-stage surrogate-assisted hybrid algorithm for expensive optimization problems[J]. Complex & Intelligent Systems, 2021, 7(3): 1391-1405. [35] YAN Z Y, ZHOU Y R, HE X Y, et al. High-dimensional expensive optimization by Kriging-assisted multiobjective evolutionary algorithm with dimensionality reduction[J]. Information Sciences, 2025, 691: 121620. [36] WU M T, XU J, WANG L L, et al. Adaptive multi-surrogate and module-based optimization algorithm for high-dimensional and computationally expensive problems[J]. Information Sciences, 2023, 645: 119308. [37] LI F, LI Y L, CAI X W, et al. A surrogate-assisted hybrid swarm optimization algorithm for high-dimensional computationally expensive problems[J]. Swarm and Evolutionary Computation, 2022, 72: 101096. [38] YE N H, LONG T, SHI R H, et al. Radial basis function-assisted adaptive differential evolution using cooperative dual-phase sampling for high-dimensional expensive optimization problems[J]. Structural and Multidisciplinary Optimization, 2022, 65(9): 241. [39] HARRISON K R. Surrogate-assisted analysis of the parameter configuration landscape for meta-heuristic optimization[J]. Applied Soft Computing, 2023, 146: 110705. [40] STANDER L, WOOLWAY M, VAN ZYL T L. Surrogate-assisted evolutionary multi-objective optimization applied to a pressure swing adsorption system[J]. Neural Computing and Applications, 2025, 37(2): 739-755. [41] PAN J S, ZHANG L G, WANG R B, et al. Gannet optimization algorithm: a new metaheuristic algorithm for solving engineering optimization problems[J]. Mathematics and Computers in Simulation, 2022, 202: 343-373. [42] LIU S L, WANG H D, PENG W, et al. A surrogate-assisted evolutionary feature selection algorithm with parallel random grouping for high-dimensional classification[J]. IEEE Transa-ctions on Evolutionary Computation, 2022, 26(5): 1087-1101. [43] PEREIRA J L J, FRANCISCO M B, RIBEIRO R F, et al. Deep multiobjective design optimization of CFRP isogrid tubes using lichtenberg algorithm[J]. Soft Computing, 2022, 26(15): 7195-7209. [44] DU Y H, QIU W J, CHEN W N. Influence maximization with reverse influence sampling and evolutionary algorithm[C]//Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2023: 783-790. [45] LIN C N, LI T C, CHEN S Y, et al. Long-term viscoelastic deformation monitoring of a concrete dam: a multi-output surrogate model approach for parameter identification[J]. Engineering Structures, 2022, 266: 114553. [46] MAGALH?ES J M, HALILA G L O, KIM Y, et al. Intelligent data-driven aerodynamic analysis and optimization of morphing configurations[J]. Aerospace Science and Technology, 2022, 121: 107388. [47] ZHANG W Q, HU Y, ZHANG Y, et al. A multiple surrogate-assisted hybrid evolutionary feature selection algorithm[J]. Swarm and Evolutionary Computation, 2025, 92: 101809. [48] LI G H, WANG Z K, GONG M G. Expensive optimization via surrogate-assisted and model-free evolutionary optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(5): 2758-2769. [49] CHEN A, REN Z G, WANG M Y, et al. A surrogate-assisted highly cooperative coevolutionary algorithm for hyperparameter optimization in deep convolutional neural networks[J]. Applied Soft Computing, 2023, 147: 110794. [50] GUO D, WANG X L, GAO K L, et al. Evolutionary optimization of high-dimensional multiobjective and many-objective expensive problems assisted by a dropout neural network[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(4): 2084-2097. [51] CHEN G D, ZHANG K, XUE X M, et al. Surrogate-assisted evolutionary algorithm with dimensionality reduction method for water flooding production optimization[J]. Journal of Petroleum Science and Engineering, 2020, 185: 106633. [52] HONG J C, PAN A Q, REN Z Y, et al. Radial projection-based adaptive sampling strategies for surrogate-assisted many-objective optimization[J]. Engineering Applications of Artificial Intelligence, 2024, 130: 107745. [53] REN X D, GUO D F, REN Z G, et al. Enhancing hierarchical surrogate-assisted evolutionary algorithm for high-dimensional expensive optimization via random projection[J]. Complex & Intelligent Systems, 2021, 7(6): 2961-2975. [54] GUO D F, REN Z G, LIANG Y S, et al. Scaling up radial basis function for high-dimensional expensive optimization using random projection[C]//Proceedings of the 2020 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2020: 1-8. [55] WANG H D, JIN Y C, YANG C E, et al. Transfer stacking from low-to high-fidelity: a surrogate-assisted bi-fidelity evolutionary algorithm[J]. Applied Soft Computing, 2020, 92: 106276. [56] K?DELA J, MATOU?EK R. Combining Lipschitz and RBF surrogate models for high-dimensional computationally expensive problems[J]. Information Sciences, 2023, 619: 457-477. [57] CHEN C H, WANG X J, DONG H C, et al. Surrogate-assisted hierarchical learning water cycle algorithm for high-dimensional expensive optimization[J]. Swarm and Evolutionary Computation, 2022, 75: 101169. [58] AYE C M, WANSASEUB K, KUMAR S, et al. Airfoil shape optimisation using a multi-fidelity surrogate-assisted metaheuristic with a new multi-objective infill sampling technique[J]. Computer Modeling in Engineering and Sciences, 2023, 137(3): 2111-2128. [59] LI G H, XIE L D, WANG Z K, et al. Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization[J]. Information Sciences, 2023, 634: 423-442. [60] CHENG X D, YU Y G, HU W. Multi-surrogate-assisted stochastic fractal search algorithm for high-dimensional expensive problems[J]. Information Sciences, 2023, 64(9): 119035. [61] ZHAO M J, ZHANG K, CHEN G D, et al. A surrogate-assisted multi-objective evolutionary algorithm with dimension-reduction for production optimization[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107192. [62] SHEN J T, WANG P, DONG H C, et al. Surrogate-assisted evolutionary algorithm with decomposition-based local lear-ning for high-dimensional multi-objective optimization[J]. Expert Systems with Applications, 2024, 240: 122575. [63] GU Q H, ZHOU Y F, LI X X, et al. A surrogate-assisted radial space division evolutionary algorithm for expensive many-objective optimization problems[J]. Applied Soft Computing, 2021, 111: 107703. [64] CHEN G D, ZHANG K, XUE X M, et al. A radial basis fun-ction surrogate model assisted evolutionary algorithm for high-dimensional expensive optimization problems[J]. Applied Soft Computing, 2022, 116: 108353. [65] HUANG K H, ZHEN H X, GONG W Y, et al. Surrogate-assisted evolutionary sampling particle swarm optimization for high-dimensional expensive optimization[J]. Neural Computing and Applications, 2023. DOI: 10.1007/s00521-023-08661-3. [66] CHU S C, YUAN X, PAN J S, et al. A multi-strategy surrogate-assisted social learning particle swarm optimization for expensive optimization and applications[J]. Applied Soft Compu-ting, 2024, 162: 111876. [67] DU W H, REN Z G, WANG J H, et al. A surrogate-assisted evolutionary algorithm with knowledge transfer for expensive multimodal optimization problems[J]. Information Sciences, 2024, 652: 119745. [68] CAI X W, GAO L, LI X Y. Efficient generalized surrogate-assisted evolutionary algorithm for high-dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(2): 365-379. [69] TIAN J, HOU M D, BIAN H L, et al. Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems[J]. Complex & Intelligent Systems, 2023, 9(4): 3887-3935. [70] HU X M, SU W W, LI M. Surrogate-assisted ensemble social learning particle swarm optimization[C]//Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2021: 2650-2655. [71] ZHENG L, SHI J Y, YANG Y P. A two-stage surrogate-assisted meta-heuristic algorithm for high-dimensional expensive problems[J]. Soft Computing, 2023, 27(10): 6465-6486. [72] ZHAN D W, XING H L. A fast Kriging-assisted evolutionary algorithm based on incremental learning[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(5): 941-955. [73] BIAN H L, TIAN J, YU J L, et al. Bayesian co-evolutionary optimization based entropy search for high-dimensional many-objective optimization[J]. Knowledge-Based Systems, 2023, 274: 110630. [74] 王浩丞, 李凌. 动态拓扑结构混合粒子群算法及其应用[J]. 计算机科学与探索, 2024, 18(8): 2065-2079. WANG H C, LI L. Hybrid particle swarm algorithm with dynamic topology and its applications[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2065-2079. [75] LI F, GAO L, SHEN W M, et al. Surrogate-assisted multi-objective evolutionary optimization with a multi-offspring method and two infill criteria[J]. Swarm and Evolutionary Computation, 2023, 79: 101315. [76] XIA W, SHOEMAKER C, AKHTAR T, et al. Efficient parallel surrogate optimization algorithm and framework with application to parameter calibration of computationally expensive three-dimensional hydrodynamic lake PDE models[J]. Environmental Modelling & Software, 2021, 135: 104910. [77] LI F, CAI X W, GAO L, et al. A surrogate-assisted multiswarm optimization algorithm for high-dimensional computationally expensive problems[J]. IEEE Transactions on Cybernetics, 2021, 51(3): 1390-1402. [78] ZHU Q N, YU H B, KANG L, et al. A Q-learning driven competitive surrogate assisted evolutionary optimizer with multiple oriented mutation operators for expensive problems[J]. Information Sciences, 2024, 682: 121224. [79] PAN J S, ZHANG A N, CHU S C, et al. An activity level based surrogate-assisted evolutionary algorithm for many-objective optimization[J]. Applied Soft Computing, 2024, 164: 111967. [80] LI J L, WANG P, DONG H C, et al. A two-stage surrogate-assisted evolutionary algorithm (TS-SAEA) for expensive multi/many-objective optimization[J]. Swarm and Evolutionary Computation, 2022, 73: 101107. [81] LI J L, WANG P, DONG H C, et al. Multi/many-objective evolutionary algorithm assisted by radial basis function models for expensive optimization[J]. Applied Soft Computing, 2022, 122: 108798. [82] ZHAO Y, ZENG J C, TAN Y. Neighborhood samples and surrogate assisted multi-objective evolutionary algorithm for expensive many-objective optimization problems[J]. Applied Soft Computing, 2021, 105: 107268. [83] YU M J, WANG Z, DAI R, et al. A two-stage dominance-based surrogate-assisted evolution algorithm for high-dimensional expensive multi-objective optimization[J]. Scientific Reports, 2023, 13: 13163. [84] WANG W Z, LIU H L, TAN K C. A surrogate-assisted differential evolution algorithm for high-dimensional expensive optimization problems[J]. IEEE Transactions on Cybernetics, 2023, 53(4): 2685-2697. [85] LIN L B, LIU T, ZHANG H, et al. Classification model-based and assisted environment selection for evolutionary algorithms to solve high-dimensional expensive problems[J]. Information Sciences, 2023, 648: 119458. [86] 王尔申, 孙薪蕙, 曲萍萍, 等. 基于动态粒子群算法的ARAIM可用性优化方法[J]. 测绘学报, 2024, 53(1): 137-145. WANG E S, SUN X H, QU P P, et al. ARAIM availability optimization method based on dynamic particle swarm optimization algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 137-145. [87] HORAGUCHI Y, NAKATA M. High-dimensional expensive optimization by classification-based multiobjective evolutionary algorithm with dimensionality reduction[C]//Proceedings of the 2023 62nd Annual Conference of the Society of Instrument and Control Engineers. Piscataway: IEEE, 2023: 1535-1542. [88] WANG L, YAO Y D, ZHANG T, et al. A novel self-adaptive multi-fidelity surrogate-assisted multi-objective evolutionary algorithm for simulation-based production optimization[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110111. [89] LI B D, YANG Y T, LIU D C, et al. Accelerating surrogate assisted evolutionary algorithms for expensive multi-objective optimization via explainable machine learning[J]. Swarm and Evolutionary Computation, 2024, 88: 101610. [90] 刘威, 郭直清, 姜丰, 等. 协同围攻策略改进的灰狼算法及其PID参数优化[J]. 计算机科学与探索, 2023, 17(3): 620-634. LIU W, GUO Z Q, JIANG F, et al. Improved grey wolf optimizer based on cooperative attack strategy and its PID parameter optimization[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 620-634. [91] CHU S C, YUAN X, PAN J S, et al. An efficient surrogate-assisted Taguchi salp swarm algorithm and its application for intrusion detection[J]. Wireless Networks, 2024, 30(4): 2675-2696. [92] YANG Z, QIU H B, GAO L, et al. Two-layer adaptive surrogate-assisted evolutionary algorithm for high-dimensional computationally expensive problems[J]. Journal of Global Optimization, 2019, 74(2): 327-359. [93] WANG X J, GAO L, LI X Y. Multiple surrogates and offspring-assisted differential evolution for high-dimensional expensive problems[J]. Information Sciences, 2022, 592: 174-191. [94] AWAD N H, ALI M Z, MALLIPEDDI R, et al. An improved differential evolution algorithm using efficient adapted surrogate model for numerical optimization[J]. Information Sciences, 2018, 451/452: 326-347. [95] JI X F, ZHANG Y, HE C L, et al. Surrogate and autoencoder-assisted multitask particle swarm optimization for high-dimensional expensive multimodal problems[J]. IEEE Transactions on Evolutionary Computation, 2024, 28(4): 1009-1023. [96] COSENZA Z, BLOCK D E. A generalizable hybrid search framework for optimizing expensive design problems using surrogate models[J]. Engineering Optimization, 2021, 53(10): 1772-1785. [97] CUI M J, LI L, ZHOU M C, et al. Surrogate-assisted autoencoder-embedded evolutionary optimization algorithm to solve high-dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(4): 676-689. [98] RODEMANN J, AUGUSTIN T. Imprecise Bayesian optimization[J]. Knowledge-Based Systems, 2024, 300: 112186. |
| [1] | 魏健, 宋小庆, 王钦钊. 黑盒攻击智能识别对抗算法研究现状[J]. 计算机工程与应用, 2023, 59(13): 61-73. |
| [2] | 胡晓敏,王明丰,张首荣,李敏. 用于文本聚类的新型差分进化粒子群算法[J]. 计算机工程与应用, 2021, 57(4): 61-67. |
| [3] | 黄泽英,李海艳,林景亮. 迁移学习下的极限学习机代理建模方法及应用[J]. 计算机工程与应用, 2021, 57(22): 257-262. |
| [4] | 朱苗苗,潘伟杰,刘翔,吕健,赵慧亮. 基于BP神经网络代理模型的交互式遗传算法[J]. 计算机工程与应用, 2020, 56(2): 146-151. |
| [5] | 魏锋涛,卢凤仪. 融合核函数在改进径向基代理模型中的应用[J]. 计算机工程与应用, 2019, 55(7): 58-65. |
| [6] | 刘玉琳1,2,陈文亮2,鲍益东2,丁力平2. 基于改进支持向量机的快速稳健代理模型研究[J]. 计算机工程与应用, 2015, 51(7): 7-11. |
| [7] | 喻小光1,2,战德臣1,聂兰顺1. 应用遗传模拟退火算法实现资源受限项目调度[J]. 计算机工程与应用, 2009, 45(24): 17-20. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||