计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (22): 75-91.DOI: 10.3778/j.issn.1002-8331.2501-0412

• 热点与综述 • 上一篇    下一篇

支持代理的元启发算法解决高维计算昂贵问题研究综述

王红,康玲,郭雨林   

  1. 大连东软信息学院 计算机与软件学院,辽宁 大连 116023
  • 出版日期:2025-11-15 发布日期:2025-11-14

Review of Surrogate-Assisted Meta-Heuristic?Algorithms for High-Dimensional Computationally Expensive Optimization Problems

WANG Hong, KANG Ling, GUO Yulin   

  1. School of Computer and Software, Dalian Neusoft University of Information, Dalian, Liaoning 116023, China
  • Online:2025-11-15 Published:2025-11-14

摘要: 高维且计算昂贵的优化问题广泛存在于能源与资源优化、城市与环境、工业设计与制造、航空航天及通信与信息等领域。维度的增长带来搜索空间的扩大,计算昂贵限制真实解的评价次数,使得原有的优化算法失效。基于代理的元启发算法,使用代理模型替代昂贵的真实函数适应度评估,借助元启发算法指导优化方向,可以在保持优化精度的同时显著减少计算时间和成本。针对工程应用中优化问题高维且计算昂贵的特点,从初始样例点生成、代理模型构建与更新、进化算法使用、探索与开发平衡、自适应性设计、实际应用几个角度对近年基于代理的元启发算法文献进行整理,归纳总结基于代理的元启发算法如何应对这两大挑战。最后就目前研究不充分的问题,给出了未来发展方向。

关键词: 代理模型, 元启发算法, 高维度, 计算昂贵优化问题, 探索与开发

Abstract: High-dimensional and expensive optimization problems are widely present in fields such as energy and resource optimization, urban and environmental planning, industrial design and manufacturing, aerospace, communication and information, etc. The increasing of dimension leads to an expansion of the search space, while the computational expense limits the times that the true solution can be evaluated. The aforementioned reasons render traditional optimization algorithms ineffective. Surrogate-assisted meta-heuristic algorithms, which use surrogate models to replace the expensive real fitness evaluations and utilize meta-heuristic algorithms to guide the optimization direction, can significantly reduce computational time and cost while maintaining optimization accuracy. This paper, focusing on the characteristics of high-dimension and expensive computation in optimization problems, organizes recent literature on surrogate-assisted meta-heuristic algorithms from six perspectives: generating initial sample points, constructing and updating surrogate models, using evolutionary algorithms, balancing exploration and exploitation, designing adaptability, and practical applications. The paper summarizes how surrogate-assisted meta-heuristic algorithms address these two major challenges. Finally, it proposes future research directions for aspects that are currently under-researched.

Key words: surrogate model, meta-heuristic algorithm, high-dimension, computationally expensive optimization problems, exploration and exploitation