计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 1-18.DOI: 10.3778/j.issn.1002-8331.2410-0153

• 热点与综述 • 上一篇    下一篇

多模态驾驶员情绪识别研究综述

周欣颖,李雷孝,林浩,张虎成   

  1. 1.内蒙古工业大学 数据科学与应用学院,呼和浩特 010080
    2.内蒙古自治区北疆网络空间安全重点实验室,呼和浩特 010080
    3.内蒙古自治区基于大数据的软件服务工程技术研究中心,呼和浩特 010080
    4.天津理工大学 计算机科学与工程学院,天津 300384
  • 出版日期:2025-05-15 发布日期:2025-05-15

Review of Multi-Modal Driver Emotion Recognition

ZHOU Xinying, LI Leixiao, LIN Hao, ZHANG Hucheng   

  1. 1.College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China
    2.Inner Mongolia Key Laboratory of Beijiang Cyberspace Security, Hohhot 010080, China
    3.Inner Mongolia Autonomous Region Software Service Engineering Technology Research Center Based on Big Data, Hohhot 010080, China
    4.College of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 准确识别驾驶员情绪可以有效预防潜在的危险驾驶行为,减少交通事故的发生,是提升道路安全和驾驶体验的重要技术。随着人工智能和多模态数据处理技术的进步,情绪识别技术从单模态方法逐步发展为多模态方法。梳理了当前多模态驾驶员情绪识别的研究进展,重点总结了面部表情、语音信号、生理信号以及车辆行为四种模态的识别流程,关键步骤包括数据预处理、特征提取和多模态融合。通过分析现有研究,总结了不同方法的优势与不足,介绍了多个驾驶员情绪相关数据集。最后结合当前研究所面临的挑战,提出了未来多模态驾驶员情绪识别研究领域的五个研究方向。

关键词: 驾驶员情绪识别, 多模态融合, 特征提取, 情感计算

Abstract: Accurately identifying driver emotions can effectively prevent potential dangerous driving behaviors and reduce the occurrence of traffic accidents. It is an important technology to improve road safety and driving experience. With the progress of artificial intelligence and multi-modal data processing technology, emotion recognition technology has gradually developed from a single-modal approach to a multi-modal approach. This paper reviews the current research progress of multi-modal driver emotion recognition, and focuses on the recognition process of facial expression, voice signal, physiological signal and vehicle behavior. The key steps include data preprocessing, feature extraction and multi-modal fusion. By analyzing the existing research, the advantages and disadvantages of different methods are summarized, and several driver emotion-related datasets are introduced. Finally, combined with the current research challenges, five research directions in the field of multi-modal driver emotion recognition in the future are proposed.

Key words: driver emotion recognition, multi-modal fusion, feature extraction, emotional computing