
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 1-18.DOI: 10.3778/j.issn.1002-8331.2410-0153
周欣颖,李雷孝,林浩,张虎成
出版日期:2025-05-15
发布日期:2025-05-15
ZHOU Xinying, LI Leixiao, LIN Hao, ZHANG Hucheng
Online:2025-05-15
Published:2025-05-15
摘要: 准确识别驾驶员情绪可以有效预防潜在的危险驾驶行为,减少交通事故的发生,是提升道路安全和驾驶体验的重要技术。随着人工智能和多模态数据处理技术的进步,情绪识别技术从单模态方法逐步发展为多模态方法。梳理了当前多模态驾驶员情绪识别的研究进展,重点总结了面部表情、语音信号、生理信号以及车辆行为四种模态的识别流程,关键步骤包括数据预处理、特征提取和多模态融合。通过分析现有研究,总结了不同方法的优势与不足,介绍了多个驾驶员情绪相关数据集。最后结合当前研究所面临的挑战,提出了未来多模态驾驶员情绪识别研究领域的五个研究方向。
周欣颖, 李雷孝, 林浩, 张虎成. 多模态驾驶员情绪识别研究综述[J]. 计算机工程与应用, 2025, 61(10): 1-18.
ZHOU Xinying, LI Leixiao, LIN Hao, ZHANG Hucheng. Review of Multi-Modal Driver Emotion Recognition[J]. Computer Engineering and Applications, 2025, 61(10): 1-18.
| [1] SHAMS Z, NADERI H, NASSIRI H. Assessing the effect of inattention-related error and anger in driving on road accidents among Iranian heavy vehicle drivers[J]. IATSS Research, 2021, 45(2): 210-217. [2] GALDERISI S. The need for a consensual definition of mental health[J]. World Psychiatry, 2024, 23(1): 52-53. [3] ZAMAN K, SUN Z Y, SHAH S M, et al. Driver emotions recognition based on improved faster R-CNN and neural architectural search network[J]. Symmetry, 2022, 14(4): 687. [4] LI W B, XUE J Y, TAN R C, et al. Global-local-feature-fused driver speech emotion detection for intelligent cockpit in automated driving[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(4): 2684-2697. [5] KUO J, KOPPEL S, CHARLTON J L, et al. Evaluation of a video-based measure of driver heart rate[J]. Journal of Safety Research, 2015, 54: 55-59. [6] ALKINANI M H, KHAN W Z, ARSHAD Q. Detecting human driver inattentive and aggressive driving behavior using deep learning: recent advances, requirements and open challenges[J]. IEEE Access, 2020, 8: 105008-105030. [7] SAADI I, CUNNINGHAM D W, TALEB-AHMED A, et al. Driver’s facial expression recognition: a comprehensive survey[J]. Expert Systems with Applications, 2024, 242: 122784. [8] ZEPF S, HERNANDEZ J, SCHMITT A, et al. Driver emotion recognition for intelligent vehicles: a survey[J]. ACM Computing Surveys, 2020, 53(3): 1-30. [9] SOLEYMANI M, GARCIA D, JOU B, et al. A survey of multimodal sentiment analysis[J]. Image and Vision Computing, 2017, 65: 3-14. [10] EKMAN P. Expression and the nature of emotion[M]//Approaches to emotion. New York: Psychology Press, 1984: 319-343. [11] KLINEBERG O. Human emotions by Carroll E. Izard (review)[J]. Leonardo, 1981, 14(1): 69. [12] WUNDT W. Vorlesungen über die menschen-und thierseele[M]. Berlin: Springer, 1990: 103. [13] RUSSELL J A, MEHRABIAN A. Evidence for a three-factor theory of emotions[J]. Journal of Research in Personality, 1977, 11(3): 273-294. [14] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. [15] NGIAM J, KHOSLA A, KIM M, et al. Multimodal deep learning[C]//Proceedings of the 28th International Conference on Machine Learning, 2011: 689-696. [16] HUANG Y, DU C Z, XUE Z H, et al. What makes multi-modal learning better than single (provably)[C]//Proceedings of the 35th Conference on Neural Information Processing Systems, 2021: 10944-10956. [17] SRIVASTAVA N, SALAKHUTDINOV R. Multimodal learning with deep Boltzmann machines[J]. Journal of Machine Learning Research, 2014, 15(1): 2949-2980. [18] TZIRAKIS P, TRIGEORGIS G, NICOLAOU M A, et al. End-to-end multimodal emotion recognition using deep neural networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(8): 1301-1309. [19] BALTRUSAITIS T, AHUJA C, MORENCY L P. Multimodal machine learning: a survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 423-443. [20] VIOLA P, JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57: 137-154. [21] GUO G J, WANG H Z, YAN Y, et al. A fast face detection method via convolutional neural network[J]. Neurocomputing, 2020, 395: 128-137. [22] LI X, LAI S Q, QIAN X M. DBCFace: towards pure convolutional neural network face detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(4): 1792-1804. [23] ZHANG Z P, LUO P, LOY C C, et al. Facial landmark detection by deep multi-task learning[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 94-108. [24] YUE X Q, LI J, WU J, et al. Multi-task adversarial autoencoder network for face alignment in the wild[J]. Neurocomputing, 2021, 437: 261-273. [25] EBRAHIMI KAHOU S, MICHALSKI V, KONDA K, et al. Recurrent neural networks for emotion recognition in video[C]//Proceedings of the 2015 ACM International Conference on Multimodal Interaction. New York: ACM, 2015: 467-474. [26] PITALOKA D A, WULANDARI A, BASARUDDIN T, et al. Enhancing CNN with preprocessing stage in automatic emotion recognition[J]. Procedia Computer Science, 2017, 116: 523-529. [27] KUO C M, LAI S H, SARKIS M. A compact deep learning model for robust facial expression recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2018: 2202-2208. [28] LU Y S, LIU C S, CHANG F L, et al. JHPFA-net: joint head pose and facial action network for driver yawning detection across arbitrary poses in videos[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 11850-11863. [29] DENG J K, GUO J, VERVERAS E, et al. RetinaFace: single-shot multi-level face localisation in the wild[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5202-5211. [30] DOUKAS M C, VERVERAS E, SHARMANSKA V, et al. Free-HeadGAN: neural talking head synthesis with explicit gaze control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9743-9756. [31] ZHAO X C, WANG L Z, SUN J X, et al. HAvatar: high-fidelity head avatar via facial model conditioned neural radiance field[J]. ACM Transactions on Graphics, 2023, 43(1): 1-16. [32] KOELSTRA S, MUHL C, SOLEYMANI M, et al. DEAP: a database for emotion analysis using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 18-31. [33] HOUSSEIN E H, HAMMAD A, ALI A A. Human emotion recognition from EEG-based brain—computer interface using machine learning: a comprehensive review[J]. Neural Computing and Applications, 2022, 34(15): 12527-12557. [34] GUPTA V, CHOPDA M D, PACHORI R B. Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals[J]. IEEE Sensors Journal, 2019, 19(6): 2266-2274. [35] ALICKOVIC E, KEVRIC J, SUBASI A. Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction[J]. Biomedical Signal Processing and Control, 2018, 39: 94-102. [36] PRUIM R H R, MENNES M, BUITELAAR J K, et al. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI[J]. NeuroImage, 2015, 112: 278-287. [37] JIRAYUCHAROENSAK S, PAN-NGUM S, ISRASENA P. EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation[J]. The Scientific World Journal, 2014: 627892. [38] TURAKHIA M P, DESAI M, HEDLIN H, et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: the Apple Heart Study[J]. American Heart Journal, 2019, 207: 66-75. [39] RAY D, COLLINS T, WOOLLEY S I, et al. A review of wearable multi-wavelength photoplethysmography[J]. IEEE Reviews in Biomedical Engineering, 2021, 16: 136-151. [40] ELGENDI M, FLETCHER R, LIANG Y B, et al. The use of photoplethysmography for assessing hypertension[J]. NPJ Digital Medicine, 2019, 2: 60. [41] WANG W J, DEN BRINKER A C, STUIJK S, et al. Algorithmic principles of remote PPG[J]. IEEE Transactions on Bio-Medical Engineering, 2017, 64(7): 1479-1491. [42] 高绮煌, 谢凯, 贺正方, 等. 复杂环境下多模态特征融合的疲劳驾驶检测[J]. 电子测量技术, 2023, 46(6): 106-115. GAO Q H, XIE K, HE Z F, et al. Fatigue driving detection with multi-modal feature fusion in complex environments[J]. Electronic Measurement Technology, 2023, 46(6): 106-115. [43] CHENG J, WANG P, SONG R C, et al. Remote heart rate measurement from near-infrared videos based on joint blind source separation with delay-coordinate transformation[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 5005313. [44] AK?AY M B, O?UZ K. Speech emotion recognition: emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers[J]. Speech Communication, 2020, 116: 56-76. [45] 乔栋, 陈章进, 邓良, 等. 基于改进语音处理的卷积神经网络中文语音情感识别方法[J]. 计算机工程, 2022, 48(2): 281-290. QIAO D, CHEN Z J, DENG L, et al. Method for Chinese speech emotion recognition based on improved speech processing convolutional neural network[J]. Computer Engineering, 2022, 48(2): 281-290. [46] CHEN C X, ZHANG P Y. TRNet: two-level refinement network leveraging speech enhancement for noise robust speech emotion recognition[J]. Applied Acoustics, 2024, 225: 110169. [47] NGUYEN T H, LU D N, NGUYEN D N, et al. Dynamic basic activity sequence matching method in abnormal driving pattern detection using smartphone sensors[J]. Electronics, 2020, 9(2): 217. [48] CHEN H L, ZHAO X H, LI Z L, et al. Construction and analysis of driver takeover behavior modes based on situation awareness theory[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(2): 4040-4054. [49] SHI X P, WONG Y D, LI M Z, et al. A feature learning approach based on XGBoost for driving assessment and risk prediction[J]. Accident Analysis & Prevention, 2019, 129: 170-179. [50] ALEESA R S, MAHVASH MOHAMMADI H, MONADJEMI A, et al. Dataset classification: an efficient feature extraction approach for grammatical facial expression recognition[J]. Computers and Electrical Engineering, 2023, 110: 108891. [51] PAN B, HIROTA K, JIA Z Y, et al. Multimodal emotion recognition based on feature selection and extreme learning machine in video clips[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(3): 1903-1917. [52] DU G L, WANG Z Y, GAO B Y, et al. A convolution bidirectional long short-term memory neural network for driver emotion recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4570-4578. [53] MORALES-VARGAS E, REYES-GARCíA C A, PEREGRINA-BARRETO H. On the use of action units and fuzzy explanatory models for facial expression recognition[J]. PLoS One, 2019, 14(10): e0223563. [54] PATIL M, VENI S. Driver emotion recognition for enhancement of human machine interface in vehicles[C]//Proceedings of the 2019 International Conference on Communication and Signal Processing. Piscataway: IEEE, 2019: 420-424. [55] BAKHEET S, AL-HAMADI A. A framework for instantaneous driver drowsiness detection based on improved HOG features and na?ve Bayesian classification[J]. Brain Sciences, 2021, 11(2): 240. [56] ZHANG Y, ZHANG L, HOSSAIN M A. Adaptive 3D facial action intensity estimation and emotion recognition[J]. Expert Systems with Applications, 2015, 42(3): 1446-1464. [57] 权学良, 曾志刚, 蒋建华, 等. 基于生理信号的情感计算研究综述[J]. 自动化学报, 2021, 47(8): 1769-1784. QUAN X L, ZENG Z G, JIANG J H, et al. Physiological signals based affective computing: a systematic review[J]. Acta Automatica Sinica, 2021, 47(8): 1769-1784. [58] JENKE R, PEER A, BUSS M. Feature extraction and selection for emotion recognition from EEG[J]. IEEE Transactions on Affective Computing, 2014, 5(3): 327-339. [59] 王跃飞, 马伟丽, 王文康, 等. 基于生理特征映射的驾驶员情绪在线识别模型构建方法[J]. 机械工程学报, 2022, 58(20): 379-390. WANG Y F, MA W L, WANG W K, et al. Online recognition model construction method of driver emotion based on physiological feature mapping[J]. Journal of Mechanical Engineering, 2022, 58(20): 379-390. [60] HALIM Z, REHAN M. On identification of driving-induced stress using electroencephalogram signals: a framework based on wearable safety-critical scheme and machine learning[J]. Information Fusion, 2020, 53: 66-79. [61] NI J, XIE W Y, LIU Y P, et al. Driver emotion recognition involving multimodal signals: electrophysiological response, nasal-tip temperature, and vehicle behavior[J]. Journal of Transportation Engineering, Part A: Systems, 2024, 150(1): 04023125. [62] SAHAYADHAS A, SUNDARAJ K, MURUGAPPAN M, et al. Physiological signal based detection of driver hypovigilance using higher order spectra[J]. Expert Systems with Applications, 2015, 42(22): 8669-8677. [63] PANAHI F, RASHIDI S, SHEIKHANI A. Application of fractional Fourier transform in feature extraction from electrocardiogram and galvanic skin response for emotion recognition[J]. Biomedical Signal Processing and Control, 2021, 69: 102863. [64] MATEOS-GARCíA N, GIL-GONZáLEZ A-B, LUIS-REBOREDO A, et al. Driver stress detection from physiological signals by virtual reality simulator[J]. Electronics, 2023, 12(10): 2179. [65] DU N, YANG X J, ZHOU F. Psychophysiological responses to takeover requests in conditionally automated driving[J]. Accident Analysis & Prevention, 2020, 148: 105804. [66] 刘聪, 万根顺, 高建清, 等. 基于韵律特征辅助的端到端语音识别方法[J]. 计算机应用, 2023, 43(2): 380-384. LIU C, WAN G S, GAO J Q, et al. End-to-end speech recognition method based on prosodic features[J]. Journal of Computer Applications, 2023, 43(2): 380-384. [67] BEN ALEX S, MARY L, BABU B P. Attention and feature selection for automatic speech emotion recognition using utterance and syllable-level prosodic features[J]. Circuits, Systems, and Signal Processing, 2020, 39(11): 5681-5709. [68] ANIKIN A. A moan of pleasure should be breathy: the effect of voice quality on the meaning of human nonverbal vocalizations[J]. Phonetica, 2020, 77(5): 327-349. [69] RAJISHA T M, SUNIJA A P, RIYAS K S. Performance analysis of Malayalam language speech emotion recognition system using ANN/SVM[J]. Procedia Technology, 2016, 24: 1097-1104. [70] MISHRA S P, WARULE P, DEB S. Speech emotion recognition using MFCC-based entropy feature[J]. Signal, Image and Video Processing, 2024, 18(1): 153-161. [71] JIA X Y, SHEN X X. Multimodal emotion distribution learning[J]. Cognitive Computation, 2022, 14(6): 2141-2152. [72] 沈燕, 肖仲喆, 李冰洁, 等. 采用GW-MFCC模型空间参数的语音情感识别[J]. 计算机工程与应用, 2015, 51(10): 219-222. SHEN Y, XIAO Z Z, LI B J, et al. Speech emotion recognition using GW-MFCC feature[J]. Computer Engineering and Applications, 2015, 51(10): 219-222. [73] 李牧, 杨宇恒, 柯熙政. 基于混合特征提取与跨模态特征预测融合的情感识别模型[J]. 计算机应用, 2024, 44(1): 86-93. LI M, YANG Y H, KE X Z. Emotion recognition model based on hybrid-Mel Gama frequency cross-attention transformer modal[J]. Journal of Computer Applications, 2024, 44(1): 86-93. [74] PAVLIDIS I, DCOSTA M, TAAMNEH S, et al. Dissecting driver behaviors under cognitive, emotional, sensorimotor, and mixed stressors[J]. Scientific Reports, 2016, 6: 25651. [75] SHI Y, BOFFI M, PIGA B E A, et al. Perception of driving simulations: can the level of detail of virtual scenarios affect the driver’s behavior and emotions?[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 3429-3442. [76] WANG K X, AN N, LI B N, et al. Speech emotion recognition using Fourier parameters[J]. IEEE Transactions on Affective Computing, 2015, 6(1): 69-75. [77] KOLLIAS D, ZAFEIRIOU S. Exploiting multi-CNN features in CNN-RNN based dimensional emotion recognition on the OMG in-the-wild dataset[J]. IEEE Transactions on Affective Computing, 2021, 12(3): 595-606. [78] ZAMAN K, SUN Z Y, SHAH B, et al. A novel driver emotion recognition system based on deep ensemble classification[J]. Complex & Intelligent Systems, 2023, 9(6): 6927-6952. [79] RASTGOO M N, NAKISA B, MAIRE F, et al. Automatic driver stress level classification using multimodal deep learning[J]. Expert Systems with Applications, 2019, 138: 112793. [80] NAM Y, LEE C. Cascaded convolutional neural network architecture for speech emotion recognition in noisy conditions[J]. Sensors, 2021, 21(13): 4399. [81] MOU L T, ZHAO Y Y, ZHOU C, et al. Driver emotion recognition with a hybrid attentional multimodal fusion framework[J]. IEEE Transactions on Affective Computing, 2023, 14(4): 2970-2981. [82] YANG H H, WU J D, HU Z X, et al. Real-time driver cognitive workload recognition: attention-enabled learning with multimodal information fusion[J]. IEEE Transactions on Industrial Electronics, 2024, 71(5): 4999-5009. [83] ZHAO J F, MAO X, CHEN L J. Speech emotion recognition using deep 1D & 2D CNN LSTM networks[J]. Biomedical Signal Processing and Control, 2019, 47: 312-323. [84] FALAHZADEH M R, FARSA E Z, HARIMI A, et al. 3D convolutional neural network for speech emotion recognition with its realization on Intel CPU and NVIDIA GPU[J]. IEEE Access, 2022, 10: 112460-112471. [85] BEHERA A, WHARTON Z, LIU Y H, et al. Regional attention network (RAN) for head pose and fine-grained gesture recognition[J]. IEEE Transactions on Affective Computing, 2023, 14(1): 549-562. [86] FANG W J, TANG L R, PAN J H. AGL-net: an efficient neural network for EEG-based driver fatigue detection[J]. Journal of Integrative Neuroscience, 2023, 22(6): 146. [87] DU X B, MA C X, ZHANG G H, et al. An efficient LSTM network for emotion recognition from multichannel EEG signals[J]. IEEE Transactions on Affective Computing, 2022, 13(3): 1528-1540. [88] FU R, HUANG T, LI M Y, et al. A multimodal deep neural network for prediction of the driver’s focus of attention based on anthropomorphic attention mechanism and prior knowledge[J]. Expert Systems with Applications, 2023, 214: 119157. [89] ZHOU H S, DU J, ZHANG Y Y, et al. Information fusion in attention networks using adaptive and multi-level factorized bilinear pooling for audio-visual emotion recognition[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 2617-2629. [90] LI S Z, XING X F, FAN W Q, et al. Spatiotemporal and frequential cascaded attention networks for speech emotion recognition[J]. Neurocomputing, 2021, 448: 238-248. [91] GAN C Q, WANG K X, ZHU Q Y, et al. Speech emotion recognition via multiple fusion under spatial—temporal parallel network[J]. Neurocomputing, 2023, 555: 126623. [92] LI W B, ZENG G Z, ZHANG J C, et al. CogEmoNet: a cognitive-feature-augmented driver emotion recognition model for smart cockpit[J]. IEEE Transactions on Computational Social Systems, 2022, 9(3): 667-678. [93] HU H X, ZHANG L F, YANG T J, et al. A lightweight two-stream model for driver emotion recognition[J]. Journal of Physics: Conference Series, 2022, 2400(1): 012002. [94] LIU S Q, WANG Z Y, AN Y L, et al. EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network[J]. Knowledge-Based Systems, 2023, 265: 110372. [95] GURSESLI M C, LOMBARDI S, DURADONI M, et al. Facial emotion recognition (FER) through custom lightweight CNN model: performance evaluation in public datasets[J]. IEEE Access, 2024, 12: 45543-45559. [96] LI C. Robotic emotion recognition using two-level features fusion in audio signals of speech[J]. IEEE Sensors Journal, 2022, 22(18): 17447-17454. [97] LI X L, LIN H, DU J Z, et al. Computer vision-based driver fatigue detection framework with personalization threshold and multi-feature fusion[J]. Signal, Image and Video Processing, 2024, 18(1): 505-514. [98] 张虎成, 李雷孝, 刘东江. 多模态数据融合研究综述[J]. 计算机科学与探索, 2024, 18(10): 2501-2520. ZHANG H C, LI L X, LIU D J. Survey of multimodal data fusion research[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2501-2520. [99] SAYED H M, ELDEEB H E, TAIE S A. Multimodal data fusion architectures in Audiovisual speech recognition[C]//Proceedings of the 2023 World Conference on Information Systems and Technologies. Cham: Springer, 2023: 655-667. [100] HIEIDA C, YAMAMOTO T, KUBO T, et al. Negative emotion recognition using multimodal physiological signals for advanced driver assistance systems[J]. Artificial Life and Robotics, 2023, 28(2): 388-393. [101] DING T Q, ZHANG K X, GAO S, et al. A multimodal driver anger recognition method based on context-awareness[J]. IEEE Access, 2024, 12: 118533-118550. [102] MOU L T, ZHOU C, ZHAO P F, et al. Driver stress detection via multimodal fusion using attention-based CNN-LSTM[J]. Expert Systems with Applications, 2021, 173: 114693. [103] MOU L T, ZHOU C, XIE P T, et al. Isotropic self-supervised learning for driver drowsiness detection with attention-based multimodal fusion[J]. IEEE Transactions on Multimedia, 2021, 25: 529-542. [104] 张保梅. 数据级与特征级上的数据融合方法研究[D]. 兰州: 兰州理工大学, 2005. ZHANG B M. Research on data fusion method at data level and feature level[D]. Lanzhou: Lanzhou University of Technology, 2005. [105] OH G, JEONG E, KIM R C, et al. Multimodal data collection system for driver emotion recognition based on self-reporting in real-world driving[J]. Sensors, 2022, 22(12): 4402. [106] SUN W C, LIU Y W, LI S W, et al. Research on driver’s anger recognition method based on multimodal data fusion[J]. Traffic Injury Prevention, 2024, 25(3): 354-363. [107] HO N H, YANG H J, KIM S H, et al. Multimodal approach of speech emotion recognition using multi-level multi-head fusion attention-based recurrent neural network[J]. IEEE Access, 2020, 8: 61672-61686. [108] LI W B, TAN R C, XING Y, et al. A multimodal psychological, physiological and behavioural dataset for human emotions in driving tasks[J]. Scientific Data, 2022, 9(1): 481. [109] ANGKITITRAKUL P, PETRACCA M, SATHYANARAYANA A, et al. UTDrive: driver behavior and speech interactive systems for in-vehicle environments[C]//Proceedings of the 2007 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2007: 566-569. [110] XIANG G L, YAO S, DENG H W, et al. A multi-modal driver emotion dataset and study: including facial expressions and synchronized physiological signals[J]. Engineering Applications of Artificial Intelligence, 2024, 130: 107772. [111] MARCANTONI I, BARCHIESI G, BARCHIESI S, et al. Identification and classification of driving-related stress using electrocardiogram and skin conductance signals[C]//Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications. Piscataway: IEEE, 2022: 1-6. [112] OTHMAN W, KASHEVNIK A, ALI A, et al. DriverMVT: in-cabin dataset for driver monitoring including video and vehicle telemetry information[J]. Data, 2022, 7(5): 62. |
| [1] | 杨书新, 丁祺伟. 基于局部和全局特征聚合的虚假新闻检测方法[J]. 计算机工程与应用, 2025, 61(9): 139-147. |
| [2] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [3] | 李彬, 李生林. 改进YOLOv11n的无人机小目标检测算法[J]. 计算机工程与应用, 2025, 61(7): 96-104. |
| [4] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| [5] | 盛威, 周永霞, 陈俊杰, 赵平. 基于YOLOv8-S的偏光片表面缺陷检测算法[J]. 计算机工程与应用, 2025, 61(6): 128-140. |
| [6] | 宫法明, 兰光诚, 牛博. 复杂场景下传送带实时偏移检测[J]. 计算机工程与应用, 2025, 61(5): 269-278. |
| [7] | 胡凯涛, 马向华, 孙向宇, 刘闯. 融合Res2Net和部分卷积的带钢表面缺陷检测算法[J]. 计算机工程与应用, 2025, 61(5): 334-343. |
| [8] | 刘佳, 马志强, 吕凯, 郭思源, 周钰童, 许璧麒. 面向情感对话的情绪生成研究综述[J]. 计算机工程与应用, 2025, 61(5): 55-75. |
| [9] | 黄山, 范慧杰, 林森, 曹镜涵, 唐延东. 基于扩散方法的特征动态库[J]. 计算机工程与应用, 2025, 61(5): 241-249. |
| [10] | 梁嘉杰, 李星星. 特定任务上下文解耦的遥感图像目标检测方法[J]. 计算机工程与应用, 2025, 61(2): 293-303. |
| [11] | 焦世明, 于凯. 多领域多模态融合网络的虚假新闻检测[J]. 计算机工程与应用, 2025, 61(11): 238-248. |
| [12] | 李佳泽, 梅红岩, 贾丽云, 李文娅. 动态时间序列建模的多模态情感识别方法[J]. 计算机工程与应用, 2025, 61(1): 196-205. |
| [13] | 陈旭, 张硕, 景永俊, 王叔洋. 混合特征平衡图注意力网络日志异常检测模型[J]. 计算机工程与应用, 2025, 61(1): 308-320. |
| [14] | 王彩玲, 闫晶晶, 张智栋. 基于多模态数据的人体行为识别方法研究综述[J]. 计算机工程与应用, 2024, 60(9): 1-18. |
| [15] | 宣茜, 韩润萍, 高静欣. 基于Conformer的实时多场景说话人识别模型[J]. 计算机工程与应用, 2024, 60(7): 147-156. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||