计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (9): 315-324.DOI: 10.3778/j.issn.1002-8331.2404-0028

• 网络、通信与安全 • 上一篇    下一篇

融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法

陈虹,由雨竹,金海波,武聪,邹佳澎   

  1. 1.辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105
    2.辽宁工程技术大学 科学技术研究院,辽宁 阜新 123000
  • 出版日期:2025-05-01 发布日期:2025-04-30

Fusion of Improved Sampling Technology and SRFCNN-BiLSTM Intrusion Detection Method

CHEN Hong, YOU Yuzhu, JIN Haibo, WU Cong, ZOU Jiapeng   

  1. 1.College of Software, Liaoning Technical University, Huludao, Liaoning 125105, China
    2.Institute of Science and Technology, Liaoning Technical University, Fuxin, Liaoning 123000, China
  • Online:2025-05-01 Published:2025-04-30

摘要: 针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解决数据不平衡问题。利用堆叠降噪自动编码器(stacked denoising auto encoder, SDAE)进行数据降维,减少噪声对数据的影响,去除冗余特征。采用改进的卷积神经网络(split residual fuse convolutional neural network,SRFCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)更好地提取数据中的空间和时间特征,结合注意力机制对特征分配不同的权重,获得更好的分类能力,提高对少数攻击流量的检测率。最后,在UNSW-NB15数据集上对模型进行验证,准确率和F1分数为89.24%和90.36%,优于传统机器学习和深度学习模型。

关键词: 入侵检测, 不平衡处理, 堆叠降噪自动编码器, 卷积神经网络, 注意力机制

Abstract: In response to the issues of low detection rates caused by data imbalance and feature redundancy in many current intrusion detection methods, an intrusion detection approach integrating improved sampling techniques and SRFCNN-BiLSTM is proposed. Firstly, an FBS-RE hybrid sampling algorithm is designed, which combines Borderline-SMOTE oversampling and RENN undersampling to simultaneously process both majority and minority class samples, addressing the data imbalance problem. Secondly, stacked denoising autoencoder (SDAE) are utilized for data dimensionality reduction, minimizing the impact of noise and eliminating redundant features. Then, an improved convolutional neural network (split residual fuse convolutional neural networks, SRFCNN) and bidirectional long short-term memory network (BiLSTM) are employed to better extract spatial and temporal features from the data, an attention mechanism is incorporated to assign different weights to features, enhancing classification capabilities and improving detection rates of minority attack traffic. Finally, the model is validated on the UNSW-NB15 dataset, achieving accuracy and F1 scores of 89.24% and 90.36%, respectively, outperforming traditional machine learning and deep learning models.

Key words: intrusion detection, unbalanced treatment, stacked denoising autoencoder, convolutional neural networks, attention mechanism

中图分类号: