[1] CHOU D, JIANG M. A survey on data-driven network intrusion detection[J]. ACM Computing Surveys (CSUR), 2021, 54(9): 1-36.
[2] CHOUBISA M, DOSHI R, KHATRI N, et al. A simple and robust approach of random forest for intrusion detection system in cyber security[C]//Proceedings of the 2022 International Conference on IoT and Blockchain Technology (ICIBT), 2022: 1-5.
[3] SU Y, QI K, DI C, et al. Learning automata based feature selection for network traffic intrusion detection[C]//Proceedings of the 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), 2018: 622-627.
[4] WANG H, GU J, WANG S. An effective intrusion detection framework based on SVM with feature augmentation[J]. Knowledge-Based Systems, 2017, 136: 130-139.
[5] WU T, FAN H, ZHU H, et al. Intrusion detection system combined enhanced random forest with SMOTE algorithm[J]. EURASIP Journal on Advances in Signal Processing, 2022, 2022(1): 39.
[6] 刘涛涛, 付钰, 王坤, 等.基于VAE-CWGAN和特征统计重要性融合的网络入侵检测方法[J].通信学报, 2024, 45(2):54-67.
LIU T T, FU Y, WANG K, et al.Network intrusion detection method based on VAE-CWGAN and fusion of statistical importance of feature[J]. Journal on Communications, 2024, 45 (2): 54-67.
[7] MUSHTAQ E, ZAMEER A, UMER M, et al. A two-stage intrusion detection system with auto-encoder and LSTMs[J]. Applied Soft Computing, 2022, 121: 108768.
[8] SAYEGH H R, DONG W, AL-MADANI A M. Enhanced intrusion detection with LSTM-based model, feature selection, and SMOTE for imbalanced data[J]. Applied Sciences, 2024, 14(2): 479.
[9] 高忠石, 苏旸, 柳玉东.基于PCA-LSTM的入侵检测研究[J]. 计算机科学, 2019, 46(S2): 473-476.
GAO Z S, SU Y, LIU Y D. Study on intrusion detection based on PCA-LSTM[J]. Computer Science, 2019, 46(S2): 473-476.
[10] 杨晓文, 张健, 况立群, 等.融合CNN-BiGRU和注意力机制的网络入侵检测模型[J]. 信息安全研究, 2024, 10(3): 202-208.
YANG X W, ZHANG J, KUANG L Q, et al.A network intrusion detection model integrating CNN-BiGRU and attention mechanism[J]. Journal of Information Security Research, 2024, 10 (3): 202-208.
[11] GUPTA N, JINDAL V, BEDI P. LIO-IDS: handling class imbalance using LSTM and improved one-vs-one technique in intrusion detection system[J]. Computer Networks, 2021, 192: 108076.
[12] Al-TURAIKI I, ALTWAIJRY N. A convolutional neural networkfor improved anomaly-based network intrusion detetion[J]. Big Data, 2021, 9(3): 233-252.
[13] MA Z, LI J, SONG Y, et al. Network intrusion detectionmethod based on FCWGAN and BiLSTM[J]. Computational Intelligence and Neuroscience, 2022, 2022: 6591140.
[14] PENG K, LEUNG V C M, ZHENG L, et al. Intrusion detection system based on decision tree over big data in fog environment[J]. Wireless Communications and Mobile Computing, 2018, 2018(1): 4680867.
[15] 张玉清, 董颖, 柳彩云, 等.深度学习应用于网络空间安全的现状、趋势与展望[J]. 计算机研究与发展, 2018, 55(6): 1117-1142.
ZHANG Y Q, DONG Y, LIU C Y, et al.Situation, trends and prospects of deep learning applied to cyberspace security [J]. Journal of Computer Research and Development, 2018, 55(6): 1117-1142.
[16] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[17] 李洋, 董红斌.基于CNN和BiLSTM网络特征融合的文本情感分析[J]. 计算机应用, 2018, 38(11): 3075-3080.
LI Y, DONG H B. Text sentiment analysis based on feature fusion of convolution neural network and bidirectional long short-term network[J]. Journal of Computer Applications, 2018, 38(11): 3075-3080.
[18] ALMOGREN A S. Intrusion detection in edge-of-things computing[J]. Journal of Parallel and Distributed Computing, 2020, 137: 259-265.
[19] CHICCO D, SADOWSKI P, BALDI P. Deep autoencoder neural networks for gene ontology annotation predictions[C]//Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, 2014: 533-540.
[20] 朱铭康, 卢先领. 基于Bi-LSTM-Attention模型的人体行为识别算法[J]. 激光与光电子学进展, 2019, 56(15):153-161.
ZHU M K, LU X L. Human action recognition algorithm based on Bi-LSTM-Attention model[J]. Laser & Optoelectronics Progress, 2019, 56(15): 153-161.
[21] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(12): 3371-3408.
[22] DHANABAL L, SHANTHARAJAH S P. A study on NSL-KDD dataset for intrusion detection system based on classification algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2015, 4(6): 446-452.
[23] TAVALLAEE M, BAGHERI E, LU W, et al. A detailed analysis of the KDD CUP 99 data set[C]//Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, 2009: 1-6.
[24] MOUSTAFA N, SLAY J. The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set[J]. Information Security Journal: A Global Perspective, 2016, 25(1/2/3): 18-31.
[25] DING Y, ZHAI Y. Intrusion detection system for NSL- KDD dataset using convolutional neural networks[C]//Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence, 2018: 81-85.
[26] SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]//Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018) , 2018: 108-116.
[27] LIN Y, WANG J, TU Y, et al. Time-related network intrusion detection model: a deep learning method[C]//Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), 2019: 1-6.
[28] 王相月, 赵利辉. 基于多阶段特征选择和CNN-GRU的网络入侵检测模型[J]. 中北大学学报(自然科学版), 2024, 45(1): 66-73.
WANG X Y, ZHAO L H. Network intrusion detection model based on multi-stage feature selection and CNN-GRU [J]. Journal of North University of China(Natural Science Edition), 2024, 45(1): 66-73.
[29] SHOU D, LI C, WANG Z, et al. An intrusion detection method based on attention mechanism to improve CNN-BILSTM model[J]. The Computer Journal, 2024, 67(5): 1851-1865. |