计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (7): 370-378.DOI: 10.3778/j.issn.1002-8331.2312-0309

• 工程与应用 • 上一篇    

生物启发式D-LGMD迫近线索的无人机端到端智能导航

赵剑楠,庞德霖,赵启东,李志腾,陈绍南,岳士岗,双丰   

  1. 1.广西大学 电气工程学院,南宁 530004
    2.广西电力装备智能控制与运维重点实验室,南宁 530004
    3.广西电网有限责任公司电力科学研究院,南宁 530023
    4.英国莱斯特大学 计算与数学科学学院,莱斯特 LE1 7RH
  • 出版日期:2025-04-01 发布日期:2025-04-01

End-to-End UAV Navigation Method Based on Bio-Inspired D-LGMD Looming Cue

ZHAO Jiannan, PANG Delin, ZHAO Qidong, LI Zhiteng, CHEN Shaonan, YUE Shigang, SHUANG Feng   

  1. 1.School of Electrical Engineering, Guangxi University, Nanning 530004, China
    2.Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, Nanning 530004, China
    3.Electric Power Research Institute of Guangxi Power Grid Corporation Co., Ltd., Nanning 530023, China
    4.School of Computing and Mathematical Sciences, Leicester University, Leicester LE1 7RH, UK
  • Online:2025-04-01 Published:2025-04-01

摘要: 针对复杂场景下传统无人机自主飞行存在模块化资源难以整合、环境适应性有限而导致系统调试工作量大、响应迟缓的问题,该研究提出一种端到端的无人机自主飞行方法。该方法将生物启发式D(distributed presynaptic connection)-LGMD(lobula giant movement detector)迫近线索作为主要感知输入,以A*算法路径作为学习标签,经过最小急动轨迹优化和几何轨迹控制处理,实现复杂环境下的无人机智能导航。实验结果表明,融入带有运动信息的迫近线索可显著降低路径损失,并证明了该方法相比传统方法和领先的端到端方法具有明显的优势。

关键词: 无人机, 自主飞行, 端到端, D-LGMD, 智能导航, 生物启发式

Abstract: To address a series of challenges in UAV(unmanned aerial vehicle) navigation problem, including the limited adaptability to varying conditions, the delay of responses, the huge workload of system debugging, and the difficultiy of integrating multiple-modules, this study proposes an end-to-end method for autonomous drone flight. This method employs bio-inspired distributed presynaptic connection-lobula giant movement detector(D-LGMD) looming cues as the primary sensory input, using A* algorithm paths as learning labels. Through the minimum jerk trajectory optimization and geometric trajectory control, the proposed approach achieves intelligent navigation for drones in intricate settings. Experimental results demonstrate that incorporating looming cues with motion information significantly reduces the path loss. The results confirm that this method performs distinct advantages over traditional techniques and leading end-to-end approaches.

Key words: unmanned aerial vehicle(UAV), autonomous flight, end-to-end, distributed presynaptic connection-lobula giant movement detector(D-LGMD), intelligent navigation, bio-inspired