[1] YE M, SHEN J B, SHAO L.Visible-infrared person re-identification via homogeneous augmented tri-modal learning[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 728-739.
[2] ZHU Y X, ZHAO Y, LI W, et al. Hetero-center loss for cross-modality person re-identification[J]. Neurocomputing, 2020, 386: 97-109.
[3] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[4] CHOLLET F. Xception: deep learning with depthwise separable convolutions[J].arXiv:1610.02357, 2016.
[5] SIFRE L, MALLAT S. Rigid-motion scattering for texture classification[J]. arXiv:1403.1687, 2014.
[6] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
[7] ZHOU K, YANG Y, CAVALLARO A, et al. Learning generalisable omni-scale representations for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 44: 5056-5069.
[8] SHESHKAL S A, FOULAD-GHALEH K, AGHABABA H.An improved person re-identification method by light-weight convolutional neural network[C]//Proceedings of the 2020 10th International Conference on Computer and Knowledge Engineering, 2020.
[9] LI W, ZHU X, GONG S. Harmonious attention network for person re-identification[J].arXiv:1802.08122, 2018.
[10] LIN M, CHEN Q, YAN S. Network in network[J].arXiv:1312.4400, 2014.
[11] YE M, WANG Z, LAN X Y, et al. Visible thermal person re-identification via dual-constrained top-ranking[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018.
[12] LIU H, TAN X, ZHOU X. Parameter sharing exploration and hetero-center based triplet loss for visible-thermal person re-identification[J].IEEE Transactions on Multimedia, 2021, 23: 4414-4425.
[13] ZHONG Z, ZHENG L, KANG G, et al. Random erasing data augmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2017.
[14] MüLLER S G, HUTTER F.TrivialAugment: tuning-free yet state-of-the-art data augmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.
[15] CUBUK E D, ZOPH B, MANE D, et al. AutoAugment: learning augmentation strategies from data[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
[16] RADENOVIC F, TOLIAS G, CHUM O. Fine-tuning CNN image retrieval with no human annotation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1655-1668.
[17] HERMANS A.In defense of the triplet loss for person re-identification[J].arXiv:1703.07737, 2017.
[18] WU A, ZHENG W S, YU H X, et al. RGB-infrared cross-modality person re-identification[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017.
[19] NGUYEN D T, HONG G H, KIM K W, et al. Person recognition system based on a combination of body images from visible light and thermal cameras[J]. Sensors, 2017, 17(3): 605.
[20] YE M, SHEN J, LIN G, et al. Deep learning for person re-identification: a survey and outlook[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2872-2893.
[21] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J].International Journal of Computer Vision, 2020, 128(2): 336-359.
[22] YE M, LAN X, WANG Z, et al. Bi-directional center-constrained top-ranking for visible thermal person re-identification[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 407-419.
[23] LI D, WEI X, HONG X, et al.Infrared-visible cross-modal person re-identification with an X modality[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020.
[24] CHOI S, LEE S, KIM Y, et al.Hi-CMD: hierarchical cross-modality disentanglement for visible-infrared person re-identification[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
[25] YE M, SHEN J B, CRANDALL D J, et al. Dynamic dual-attentive aggregation learning for visible-infrared person re-identification[C]//Proceedings of the European Conference on Computer Vision, 2020.
[26] CHEN Y, WAN L, LI Z, et al. Neural feature search for RGB-infrared person re-identification[C]//Proceedings of the 2021 IEEE/CVF Conference Vision and Pattern Recognition, 2021.
[27] LIU J L, SUN Y F, ZHU F, et al. Learning memory-augmented unidirectional metrics for cross-modality personre-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
[28] WANG P Y, ZHAO Z C, SU F, et al. Deep multi-patch matching network for visible thermal person re-identification[J].IEEE Transactions on Multimedia, 2020, 23: 1474-1488.
[29] DAI P Y, JI R R, WANG H B, et al. Cross-modality person re-identification with generative adversarial training[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018.
[30] LU Y, WU Y, LIU B, et al. Cross-modality person re-identification with shared-specific feature transfer[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. |