[1] 李缘缘, 高碧珍.基于组学技术探讨微观指标在中医证研究中的价值[J].中华中医药杂志, 2022, 37(10): 5564-5567.
LI Y Y, GAO B Z. Discussion on the value of microscopic indicators in the study of traditional Chinese medicine syndromes based on omics technology[J]. Chinese Journal of Traditional Chinese Medicine, 2022, 37(10): 5564-5567.
[2] 崔芙岩, 杨佳颖, 王志刚, 等.代谢组学在中医药领域的应用与展望[J].中草药, 2022, 53(14): 4512-4526.
CUI F Y, YANG J Y, WANG Z G, et al. Application and prospect of metabonomics in traditional Chinese medicine research[J].Chinese Herbal Medicine, 2022, 53(14): 4512-4526.
[3] 李郅琴, 杜建强, 聂斌, 等.特征选择方法综述[J].计算机工程与应用, 2019, 55(24): 10-19.
LI Z Q, DU J Q, NIE B, et al. Summary of feature selection methods[J]. Computer Engineering and Applications, 2019, 55(24): 10-19.
[4] 张梦婷, 杜建强, 罗计根, 等.多目标优化特征选择研究综述[J].计算机工程与应用, 2023, 59(3): 23-32.
ZHANG M T, DU J Q, LUO J G, et al. Research on feature selection of multi-objective optimization[J]. Computer Engineering and Applications, 2023, 59(3): 23-32.
[5] 张俐.基因数据的交互依赖特征选择算法[J].电子科技大学学报, 2022, 51(5): 754-759.
ZHANG L. An algorithm for cross-dependent feature selection of genetic data[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(5): 754-759.
[6] JAYAPRAKASH A, KEZISELVAVIJILA C. Feature selection using ant colony optimization (ACO) and road sign detection and recognition (RSDR) system[J]. Cognitive Systems Research, 2019, 58: 123-133.
[7] CHAUDHURI A, SAHU T P. Multi-objective feature selection based on quasi-oppositional based Jaya algorithm for microarray data[J].?Knowledge-Based Systems, ?2022, 236: 107804.
[8] 罗计根, 熊玲珠, 杜建强, 等.一种融合近似马尔科夫毯的随机森林优化算法[J].计算机工程与应用, 2023, 59(20): 77-84.
LUO J G, XIONG L Z, DU J Q, et al.Random forest optimization algorithm fusion with approximate Markov blanket[J]. Computer Engineering and Applications, 2023, 59(20): 77-84.
[9] 唐宏, 刘丹, 姚立霜, 等.面向类不平衡网络流量的特征选择算法[J].电子与信息学报, 2021, 43(4): 923-930.
TANG H, LIU D, YAO L S, et al. Feature selection algorithm for class imbalanced internet traffic[J]. Journal of Electronics and Information, 2021, 43(4): 923-930.
[10] 孙广路, 宋智超, 刘金来, 等.基于最大信息系数和近似马尔科夫毯的特征选择方法[J].自动化学报, 2017, 43(5): 795-805.
SUN G L, SONG Z C, LIU J L, et al. Feature selection method based on maximum information coefficient and approximate Markov blanket[J]. Journal of Automation, 2017, 43(5): 795-805.
[11] 李静星, 杨有龙.针对高维数据的马尔科夫毯特征选择[J].计算机工程与应用, 2021, 57(6): 58-66.
LI J X, YANG Y L. Feature selection of Markov blanket for high dimensional data[J]. Computer Engineering and Applications, 2021, 57(6): 58-66.
[12] 张俐, 王枞, 郭文明.利用近似马尔科夫毯的最大相关最小冗余特征选择算法[J].西安交通大学学报, 2018, 52(10): 141-145.
ZHANG L, WANG Z, GUO W M. A feature selection algorithm for maximum relevance and minimum redundancy using approximate Markov blanket[J]. Journal of Xi’an Jiao-tong University, 2018, 52(10): 141-145.
[13] HUA Z, ZHOU J, HUA Y, et al. Strong approximate Markov blanket and its application on filter-based feature selection[J]. Applied Soft Computing, 2020, 87: 105957.
[14] 王大志, 季焱晶, 陈彦桦, 等.基于样本重叠与近似马尔可夫毯的特征选择算法[J].计算机应用研究, 2023, 40(3): 725-730.
WANG D Z, JI Y J, CHEN Y H, et al. Feature selection algorithm based on samples overlapping and modified Markov blanket[J]. Computer Application Research, 2023, 40(3): 725-730.
[15] LIU H, LIU L, ZHANG H. Ensemble gene selection by grouping for microarray data classification[J]. Journal of Biomedical Informatics, 2010, 43(1): 81-87.
[16] GARCíA-TORRES M, GóMEZ-VELA F, MELIáN-BATISTA B, et al.High-dimensional feature selection via feature grouping: a variable neighborhood search approach[J]. Information Sciences, 2016, 326: 102-118.
[17] ZHENG Y, LI G, ZHANG W, et al. Feature selection with ensemble learning based on improved Dempster-Shafer evidence fusion[J]. IEEE Access, 2019, 7: 9032-9045.
[18] SHREEM S S, ABDULLAH S, NAZRI M Z A. Hybridising harmony search with a Markov blanket for gene selection problems[J]. Information Sciences, 2014, 258: 108-121.
[19] RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524.
[20] PEARL J.Probabilistic reasoning in intelligent systems: networks of plausible inference[M]. Boston: Morgan Kaufmann, 1988.
[21] TIBSHIRANI R J. Regression shrinkage and selection via the LASSO[J]. Journal of the Royal Statistical Society, Series B: Methodological, 1996, 73(1): 273-282.
[22] NEWMAN D J, HETTICH S, BLAKE C L, et al.UCI repository of machine learning databases[EB/OL].(1988)[2022-12-01].http: //www.ics.uci.edu/~mlearn/MLRepository.html.
[23] LI Z, DU J, NIE B, et al. A new two-stage hybrid feature selection algorithm and its application in Chinese medicine[J]. International Journal of Machine Learning and Cybernetics, 2021, 13(5): 1243-1264.
[24] HUANG C, LI K, DU J, et al. Research on hybrid feature selection method based on iterative approximation Markov blanket[J]. Computational and Mathematical Methods in Medicine, 2020, 2020(3): 1-11.
[25] CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016. |