计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (20): 274-282.DOI: 10.3778/j.issn.1002-8331.2301-0015
张少林,姜吴瑾,李太福,杨杰
ZHANG Shaolin, JIANG Wujin, LI Taifu, YANG Jie
摘要: 针对自动贩卖机商品检测中图片变形、遮挡及光线环境,导致各商品细粒度检测性能低问题,构建一种基于YOLOX-s网络改进的算法模型YOLOX-s-BGC。通过改进的双向特征金字塔网络(BiFPN-m),减小网络特征融合过程中特征信息的丢失,并提高了模型的推理速度;同时引入Ghost卷积降低参数量以减少网络计算开销;为了可以关注图像中更具区分度的特征信息,还提出了卷积块注意力模块(CBAM),提取出更具区分性的特征。在自动贩卖机商品检测数据集上的实验结果表明,YOLOX-s-BGC模型在商品检测的检测精度达到了99.57%,相比于原始YOLOX-s算法提高了1.91个百分点,且计算参数量和模型大小基本保持不变。同时与SSD、YOLOv3、Scaled YOLOv4、YOLOv5 Lite-g等目标检测算法相比,该改进算法具有一定的优越性,是在自动贩卖机商品检测中的理想模型。