[1] SHARMA N, KUMAR V, SINGLA S K. Single image defogging using deep learning techniques: past, present and future[J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4449-4469.
[2] ENGIN D, GEN A, EKENEL H K. Cycle-dehaze: enhanced cycleGAN for single image dehazing[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, June 18-22, 2018. Washington: IEEE Computer Society, 2018: 937-938.
[3] 张晓东, 秦娟娟, 贾仲仲. 多尺度Retinex在图像去雾算法中的应用研究[J]. 西昌学院学报(自然科学版), 2021, 35(3): 60-65.
ZHANG X D, QIN J J, JIA Z Z. Study on the application of multi-scale Retinex to image defogging algorithm[J]. Journal of Xichang Unversity (Natural Science Edition), 2021, 35(3): 60-65.
[4] KIM T K, PAIK J K, KANG B S. Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering[J]. IEEE Transactions on Consumer Electronics, 1998, 44(1): 82-87.
[5] HSE W Y, CHEN Y S. Single image dehazing using wavelet-based haze-lines and denoising[J]. IEEE Access, 2021, 9: 104547-104559.
[6] NARASIMHAN S G, NAYAR S K. Vision and the atmosphere[J]. International Journal of Computer Vision, 2022, 48(3): 233-254.
[7] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.
[8] MENG G F, WANG Y, DUAN J Y, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]//Proceedings of the IEEE International Conference on Computer Vision. Australia: IEEE, 2013: 617-624.
[9] 黄文君, 李杰, 齐春. 低秩与字典表达分解的浓雾霾场景图像去雾算法[J]. 西安交通大学学报, 2020, 54(4): 118-125.
HUANG W J, LI J, QI C. A defogging algorithm for dense fog images via low rank and dictionary expression decomposition[J]. Journal of Xi’an Jiaotong University, 2020, 54(4): 118-125.
[10] LI B, PENG X, WANG Z, et al. AOD-Net: all-in-one dehazing network[C]//2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017.
[11] ZHENG Z, REN W, CAO X, et al. Ultra-high-definition image dehazing via multi-guided bilateral learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2021: 16180-16189.
[12] 刘广洲, 李金宝, 任东东, 等. 密集连接扩张卷积神经网络的单幅图像去雾[J]. 计算机科学与探索, 2021, 15(1): 185-194.
LIU G Z, LI J B, REN D D, et al. Single image dehazing method based on densely connected dilated convolutional neural network[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1): 185-194.
[13] WANG C, LI Z, WU J, et al. Deep residual haze network for image dehazing and deraining[J]. IEEE Access, 2020, 8: 9488-9500.
[14] 王德兴, 高凯, 袁红春, 等. 基于色彩校正和TransFormer细节锐化的水下图像增强[J/OL]. 吉林大学学报(工学版): 1-13[2022-08-22]. http://kns.cnki.net/kcms/detail/22.1341. T.20220815.1339.003.html.
WANG D X, GAO K, YUAN H C, et al. Underwater image enhancement based on color correction and TransFormer detail sharpening[J/OL]. Journal of Jilin University (Engineering and Technology Edition): 1-13[2022-08-22]. http://kns.cnki.net/kcms/detail/22.1341.T.20220815.1339.003.html.
[15] 梁礼明, 周珑颂, 尹江, 等. 融合多尺度Transformer的皮肤病变分割算法[J/OL]. 吉林大学学报(工学版): 1-13. DOI:10.13229/j.cnki.jdxbgxb20220692.
LIANG L M, ZHOU L S, YIN J, et al. Fusion multi-scale transformer skin lesion segmentation algorithm[J/OL]. Journal of Jilin University (Engineering and Technology Edition): 1-13. DOI:10.13229/j.cnki.jdxbgxb20220692.
[16] 高辉, 邓淼磊, 赵文君, 等. 基于弱监督的改进Transformer在人群定位中的应用[J]. 计算机工程与应用, 2023, 59(19): 92-98.
GAO H, DENG M L, ZHAO W J, et al. Application of improved Transformer based on weakly supervised in crowd localization[J]. Computer Engineering and Applications, 2023, 59(19): 92-98.
[17] 王玉萍, 曾毅, 李胜辉, 等. 一种基于Transformer的三维人体姿态估计方法[J]. 图学学报, 2023, 44(1): 139-145.
WANG Y P, ZENG Y, LI S H, et al. A Transformer-based 3D human pose estimation method[J]. Journal of Graphics, 2023, 44(1): 139-145.
[18] 田战胜, 刘立波. 基于改进Transformer的细粒度图像分类模型[J]. 激光与光电子学进展, 2023, 60(2): 161-168.
TIAN Z S, LIU L B. Fine-grained image classification model based on improved Transformer[J]. Laser & Optoelectronics Progress, 2023, 60(2): 161-168.
[19] LI X, HUA Z, LI J. Two stage single image dehazing network using swin transformerr[J]. IET Image Processing, 2022, 16(9): 2518-2534.
[20] GAO G, CAO J, BAO C, et al. A novel Transformer-based attention network for image dehazing[J]. Sensors, 2022, 22(9): 3428.
[21] LI S, YUAN Q, ZHANG Y, et al. Image dehazing algorithm based on deep learning coupled local and global features[J]. Applied Sciences, 2022, 12(17): 8552.
[22] WANG Z D, CUN X D, BAO J M, et al. Uformer: a general u-shaped Transformer for image restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). USA: IEEE, 2022: 17683-17693.
[23] JIAO Q, LIU M, NING B, et al. Image dehazing based on local and non-local features[J]. Fractal and Fractional, 2022, 6(5): 262.
[24] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[25] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C//Advances in Neural Information Processing Systems, 2017: 6000-6010.
[26] LI B Y, REN W Q, FU D P, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2019, 28(1): 492-505.
[27] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. |