[1] 茅智慧, 朱佳利, 吴鑫, 等. 基于YOLO的自动驾驶目标检测研究综述[J]. 计算机工程与应用, 2022, 58(15): 68-77.
MAO Z H, ZHU J L, WU X, et al. Review of YOLO based target detection for autonomous driving[J]. Computer Engineering and Applications, 2022, 58(15): 68-77.
[2] SIVARAMAN S, TRIVEDI M M. Looking at vehicles on the road: a survey of vision-based vehicle detection, tracking, and behavior analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1773-1795.
[3] TUERMER S, KURZ F, REINARTZ P, et al. Airborne vehicle detection in dense urban areas using HOG features and disparity maps[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(6): 2327-2337.
[4] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[5] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015.
[6] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[8] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[9] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[10] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[11] GE Z, LIU S, WANG F, et al. Yolox: exceeding yolo series in 2021[J]. arXiv:1606.08415, 2021.
[12] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[14] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//14th European Conference on Computer Vision, Amsterdam, 2016: 21-37.
[15] 郑玉珩, 黄德启. 改进MobileViT与YOLOv4的轻量化车辆检测网络[J]. 电子测量技术, 2023, 46(2): 175-183.
ZHENG Y H, HUANG D Q. Lightweight vehicle detection network based on MobileViT and YOLOv4[J]. Electronic Measurement Technology, 2023, 46(2): 175-183.
[16] 刘浩翰, 樊一鸣, 贺怀清, 等. 改进YOLOv7-tiny的目标检测轻量化模型[J]. 计算机工程与应用, 2023, 59(14): 166-175.
LIU H H, FAN Y M, HE H Q, et al. Improved YOLOv7-tiny’s object detection lightweight model[J]. Computer Engineering and Applications, 2023, 59(14): 166-175.
[17] DONG X D, YAN S, DUAN C Q. A lightweight vehicles detection network model based on YOLOv5[J]. Engineering Applications of Artificial Intelligence, 2022, 113: 104914.
[18] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[19] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS: improving object detection with one line of code[C]//2017 IEEE International Conference on Computer Vision, Venice, Italy, October 22-29, 2017. New York: IEEE Press, 2017: 5562-5570.
[20] CAI Y, ZHOU Y, HAN Q, et al. Reversible column networks[J]. arXiv:2212.11696, 2022.
[21] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[22] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[23] MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]//2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2021: 3138-3147.
[24] 荆修平, 田莹. 采用长距离依赖和多尺度表达的轻量化车辆检测[J]. 光学精密工程, 2023, 31(6): 950-961.
JING X P, TIAN Y. Lightweight vehicle detection using long-distance dependence and multi-scale representation[J]. Optics and Precision Engineering, 2023, 31(6): 950-961.
[25] JING X P, TIAN Y. Lightweight vehicle detection based on improved Yolox-nano[J]. IAENG International Journal of Computer Science, 2023, 50(1). |