计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (23): 178-184.DOI: 10.3778/j.issn.1002-8331.2105-0321
黄英来,艾昕
HUANG Yinglai, AI Xin
摘要:
针对传统的玉米叶片病害图像识别方法正确率不高、速度慢等问题,提出一种基于改进深度残差网络模型的玉米叶片图像识别算法。提出的改进策略有:将传统的ResNet-50模型第一层卷积层中7×7卷积核替换为3个3×3的卷积核;使用LeakyReLU激活函数替代ReLU激活函数;改变残差块中批标准化层、激活函数与卷积层的排列顺序。进行数据预处理,将训练集与测试集的比例划分为4∶1,采用数据增强的方式对训练集进行扩充,将改进的ResNet-50模型经过迁移学习得到在ImageNet上预训练好的权重参数。实验结果表明,改进的网络在玉米叶片病害图像分类中得到了98.3%的正确率,与其他网络模型相比准确率大幅提升,鲁棒性进一步增强,可为玉米叶片病害的识别提供参考。