计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (23): 171-177.DOI: 10.3778/j.issn.1002-8331.2103-0478
卢琪,潘志松,谢钧
LU Qi, PAN Zhisong, XIE Jun
摘要:
知识图谱问答是自然语言处理领域的研究热点之一,近年来受到广泛的关注。知识图谱问答面临需要结合多条三元组进行推理的多跳问题以及知识图谱不完整等挑战,为解决这些问题,提出了一种融合知识表示学习的双向注意力模型(Bidirectional Attention model combining Knowledge Representation,KR-BAT)。引入知识表示学习以提高模型全局建模能力,应对知识图谱不完整的情况;使用双向注意力模型捕捉候选答案和问题间丰富的交互信息,经过分析推理给出答案。在MetaQA数据集上进行了实验,对比VRN、KV-MemNN、GraftNet等基准模型,在完整知识图谱上达到了非常有竞争力的性能,在不完整知识图谱上大幅度优于基准模型。