计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 176-184.DOI: 10.3778/j.issn.1002-8331.2401-0321

• 模式识别与人工智能 • 上一篇    下一篇

融合异构图网络的多轮对话实体关系抽取

张顺淼,郑思源   

  1. 1.福建理工大学 计算机科学与数学学院,福州 350118
    2.福建省大数据挖掘与应用技术重点实验室,福州 350118
  • 出版日期:2025-05-15 发布日期:2025-05-15

Multi-Turn Dialogue Entity Relation Extraction of Heterogeneous Graph Networks

ZHANG Shunmiao, ZHENG Siyuan   

  1. 1.School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou 350118, China
    2.Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fuzhou 350118, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 对话实体关系抽取旨在从对话中提取实体对之间的关系。在多轮对话的情境下,实体信息可能分散在各个对话轮次中,同时还可能受到语境变化和语言表达多样性的影响,从而使多轮对话中的实体关系抽取更具挑战性。提出了一种融合异构图网络的多轮对话实体关系抽取模型。该模型通过文本解释器获取上下文表示,以捕捉每轮对话中的实体信息及其相应的语境。利用高斯多视图模块提取文本的隐含特征,捕捉多种视角下的对话信息。为了融合多轮对话中分散的关系信息,引入了异构图的概念,并利用异构图卷积进行信息传递。最后通过分类器对实体对之间的关系进行识别。在公共数据集DialogRE上的实验证明了该模型的有效性,其F1值为73.9%,F1c值为67.4%。

关键词: 关系抽取, 多轮对话, 异构图, 多视图

Abstract: The extraction of entity relation in dialogue aims to extract relationships between entities within a dialogue. In the context of multi-turn dialogue, entity information may be dispersed across various dialogue turns, subject to contextual variations and linguistic diversity, thereby extracting entity relations in multi-turn dialogues becomes more challenging. A multi-turn dialogue entity relation extraction model of heterogeneous graph networks is proposed. The model employs a text interpreter to obtain contextual representations, capturing entity information and its corresponding context in each dialogue turn. The Gaussian multi-view module is utilized to extract hidden features from the text, capturing dialogue information from multiple perspectives. To integrate dispersed relationship information in multi-turn dialogues, the concept of a heterogeneous graph is introduced, and heterogeneous graph convolution is utilized for information propagation. Finally, a classifier is utilized to identify relationships among pairs of entities. The model has been proven valid by experiment results on the public dataset DialogRE, with an F1 score of 73.9% and an F1c score of 67.4%.

Key words: relation extraction, multi-turn dialogue, heterogeneous graph, multi-view