[1] DELRUE L, GOSSELIN R, ILSEN B, et al. Difficulties in the interpretation of chest radiography[M]//Comparative interpretation of CT and standard radiography of the chest. Berlin, Heidelberg: Springer, 2011: 27-49.
[2] GOERGEN S K, POOL F J, TURNER T J, et al. Evidence-based guideline for the written radiology report: methods, recommendations and implementation challenges[J]. Journal of Medical Imaging and Radiation Oncology, 2013, 57(1): 1-7.
[3] BRADY A, LAOIDE R ó, MCCARTHY P, et al. Discrepancy and error in radiology: concepts, causes and consequences[J]. The Ulster Medical Journal, 2012, 81(1): 3-9.
[4] VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: a neural image caption generator[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3156-3164.
[5] TRAN A, MATHEWS A, XIE L X. Transform and tell: entity-aware news image captioning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13032-13042.
[6] JING B Y, XIE P T, XING E. On the automatic generation of medical imaging reports[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 2577-2586.
[7] LI C Y, LIANG X D, HU Z T, et al. Hybrid retrieval-generation reinforced agent for medical image report generation[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 1537-1547.
[8] LI C Y, LIANG X D, HU Z T, et al. Knowledge-driven encode, retrieve, paraphrase for medical image report generation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 6666-6673.
[9] LOVELACE J, MORTAZAVI B. Learning to generate clinically coherent chest X-ray reports[C]//Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: ACL, 2020: 1235-1243.
[10] CHEN Z H, SONG Y, CHANG T H, et al. Generating radiology reports via memory-driven transformer[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 1439-1449.
[11] MAO J H, XU W, YANG Y, et al. Deep captioning with multimodal recurrent neural networks (m-RNN)[J]. arXiv:1412.6632, 2014.
[12] TIAN J, LI C, SHI Z C, et al. A diagnostic report generator from CT volumes on liver tumor with semi-supervised attention mechanism[C]//Proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2018: 702-710.
[13] LU J S, XIONG C M, PARIKH D, et al. Knowing when to look: adaptive attention via a visual sentinel for image captioning[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3242-3250.
[14] DONAHUE J, HENDRICKS L A, GUADARRAMA S, et al. Long-term recurrent convolutional networks for visual recognition and description[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 2625-2634.
[15] ANDERSON P, HE X D, BUEHLER C, et al. Bottom-up and top-down attention for image captioning and visual question answering[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6077-6086.
[16] YANG X Y, YE M C, YOU Q Z, et al. Writing by memorizing: hierarchical retrieval-based medical report generation[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 5000-5009.
[17] CHEN Z H, SHEN Y L, SONG Y, et al. Cross-modal memory networks for radiology report generation[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 5904-5914.
[18] QIN H, SONG Y. Reinforced cross-modal alignment for radiology report generation[C]//Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 448-458.
[19] MIURA Y, ZHANG Y H, TSAI E, et al. Improving factual completeness and consistency of image-to-text radiology report generation[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 5288-5304.
[20] QI P, ZHANG Y H, ZHANG Y H, et al. Stanza: a Python natural language processing toolkit for many human languages[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Stroudsburg: ACL, 2020: 101-108.
[21] ZHANG T Y, KISHORE V, WU F, et al. BERTScore: evaluating text generation with BERT[J]. arXiv:1904.09675, 2019.
[22] LIU F L, GE S, WU X. Competence-based multimodal curriculum learning for medical report generation[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 3001-3012.
[23] LIU F L, YIN C C, WU X, et al. Contrastive attention for automatic chest X-ray report generation[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 269-280.
[24] ZHANG Y X, WANG X S, XU Z Y, et al. When radiology report generation meets knowledge graph[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12910-12917.
[25] DEMNER-FUSHMAN D, KOHLI M D, ROSENMAN M B, et al. Preparing a collection of radiology examinations for distribution and retrieval[J]. Journal of the American Medical Informatics Association, 2016, 23(2): 304-310.
[26] JOHNSON A E W, POLLARD T J, BERKOWITZ S J, et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports[J]. Scientific Data, 2019, 6(1): 317.
[27] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[28] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[29] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269.
[30] SINGH D, KUMAR V, KAUR M. Densely connected convolutional networks-based COVID-19 screening model[J]. Applied Intelligence, 2021, 51(5): 3044-3051.
[31] KE Q H, BENNAMOUN M, AN S J, et al. A new representation of skeleton sequences for 3D action recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4570-4579.
[32] YANG H Y, HUANG S J, DAI X Y, et al. Fine-grained knowledge fusion for sequence labeling domain adaptation[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 4195-4204.
[33] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[34] NOORALAHZADEH F, GONZALEZ N P, FRAUENFELDER T, et al. Progressive transformer-based generation of radiology reports[C]//Findings of the Association for Computational Linguistics: EMNLP 2021. Stroudsburg: ACL, 2021: 2824-2832.
[35] 何玉洁, 杜方, 史英杰, 等. 基于深度学习的命名实体识别研究综述[J]. 计算机工程与应用, 2021, 57(11): 21-36.
HE Y J, DU F, SHI Y J, et al. Survey of named entity recognition based on deep learning[J]. Computer Engineering and Applications, 2021, 57(11): 21-36.
[36] 常洪阳, 昝红英, 马玉团, 等. 脑卒中疾病电子病历实体及实体关系标注语料库构建[J]. 中文信息学报, 2022, 36(8): 37-45.
CHANG H Y, ZAN H Y, MA Y T, et al. Corpus construction for named-entity and entity relations for electronic medical records of stroke disease[J]. Journal of Chinese Information Processing, 2022, 36(8): 37-45.
[37] CHANG H Y, ZAN H Y, ZHANG S, et al. Corpus construction for named-entity and entity relations for electronic medical records of cardiovascular disease[C]//Proceedings of the 8th China Conference on Health Information Processing. Singapore: Springer, 2022: 3-18.
[38] IRVIN J, RAJPURKAR P, KO M, et al. CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 590-597.
[39] PAPINENI K, ROUKOS S, WARD T, et al. BLEU: a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Stroudsburg: ACL, 2002: 311-318.
[40] DENKOWSKI M, LAVIE A, DENKOWSKI M, et al. Meteor 1.3: automatic metric for reliable optimization and evaluation of machine translation systems[C]//Proceedings of the 6th Workshop on Statistical Machine Translation, 2011: 85-91.
[41] LIN C Y. ROUGE: a package for automatic evaluation of summaries[M]//Text summarization branches out. Stroudsburg: ACL, 2004.
[42] VEDANTAM R, ZITNICK C L, PARIKH D. CIDEr: consensus-based image description evaluation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 4566-4575.
[43] RENNIE S J, MARCHERET E, MROUEH Y, et al. Self-critical sequence training for image captioning[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1179-1195.
[44] WANG Z Y, LIU L Q, WANG L, et al. METransformer: radiology report generation by transformer with multiple learnable expert tokens[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 11558-11567.
[45] JING B Y, WANG Z Y, XING E. Show, describe and conclude: on exploiting the structure information of chest X-ray reports[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 6570-6580. |