[1] SAEED Z, YOUSAF M H, AHMED R, et al. On-board small-scale object detection for unmanned aerial vehicles (UAVs)[J]. Drones, 2023, 7(5): 310.
[2] BISIO I, HALEEM H, GARIBOTTO C, et al. Performance evaluation and analysis of drone-based vehicle detection techniques from deep learning perspective[J]. IEEE Internet of Things Journal, 2021, 9(13): 10920-10935.
[3] HOSHINO W, SEO J, YAMAZAKI Y. A study for detecting disaster victims using multi-copter drone with a thermographic camera and image object recognition by SSD[C]//2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2021: 162-167.
[4] SORBELLI F B, PALAZZETTI L, PINOTTI C M. YOLO-based detection of halyomorpha halys in orchards using RGB cameras and drones[J]. Computers and Electronics in Agriculture, 2023, 213: 108228.
[5] SINGHA S, AYDIN B. Automated drone detection using YOLOv4[J]. Drones, 2021, 5(3): 95.
[6] LI Y, YUAN H, WANG Y, et al. GGT-YOLO: a novel object detection algorithm for drone-based maritime cruising[J]. Drones, 2022, 6(11): 335.
[7] PIRASTEH S, RASHIDI P, RASTIVEIS H, et al. Developing an algorithm for buildings extraction and determining changes from airborne LiDAR, and comparing with R-CNN method from drone images[J]. Remote Sensing, 2019, 11(11): 1272.
[8] SEO D M, WOO H J, KIM M S, et al. Identification of asbestos slates in buildings based on faster region-based convolutional neural network (Faster R-CNN) and drone-based aerial imagery[J]. Drones, 2022, 6(8): 194.
[9] 陈卫彪, 贾小军, 朱响斌, 等. 基于DSM-YOLO v5的无人机航拍图像目标检测[J]. 计算机工程与应用, 2023, 59(18): 226-233.
CHEN W B, JIA X J, ZHU X B, et al. Target detection for UAV image based on DSM-YOLO v5[J]. Computer Engineering and Applications, 2023, 59(18): 226-233.
[10] 陈范凯, 李士心. 改进Yolov5的无人机目标检测算法[J]. 计算机工程与应用, 2023, 59(18): 218-225.
CHEN F K, LI S X. UAV target detection algorithm with improved Yolov5[J]. Computer Engineering and Applications, 2023, 59(18): 218-225.
[11] 刘涛, 丁雪妍, 张冰冰, 等. 改进YOLOv5的遥感图像检测方法[J]. 计算机工程与应用, 2023, 59(10): 253-261.
LIU T, DING X Y, ZHANG B B, et al. Improved YOLOv5 for remote sensing image detection[J]. Computer Engineering and Applications, 2023, 59(10): 253-261.
[12] LI Y, FAN Q, HUANG H, et al. A modified YOLOv8 detection network for UAV aerial image recognition[J]. Drones, 2023, 7(5): 304.
[13] LOU H, DUAN X, GUO J, et al. DC-YOLOv8: small-size object detection algorithm based on camera sensor[J]. Electronics, 2023, 12(10): 2323.
[14] GUO J, LOU H, CHEN H, et al. A new detection algorithm for alien intrusion on highway[J]. Scientific Reports, 2023, 13(1): 10667.
[15] WANG F, WANG H, QIN Z, et al. UAV target detection algorithm based on improved YOLOv8[J]. IEEE Access, 2023, 11: 116534-116544.
[16] WANG G, CHEN Y, AN P, et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190.
[17] ZHANG X, LIU C, YANG D, et al. RFAConv: innovating spatital attention and standard convolutional operation[J]. arXiv:2304.03198, 2023.
[18] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[19] LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: 121352.
[20] ZHANG H, XU C, ZHANG S. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[J]. arXiv:2311.02877, 2023.
[21] MA S L, XU Y. MPDIoU: a loss for efficient and accurate bounding box regression[J]. arXiv:2307.07662, 2023.
[22] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
[23] 张智, 易华挥, 郑锦. 聚焦小目标的航拍图像目标检测算法[J]. 电子学报, 2023, 51(4): 944-955.
ZHANG Z, YI H H, ZHENG J. Focusing on small objects detector in aerial images[J]. Acta Electonica Sinica, 2023, 51(4): 944-955.
[24] HSIEH M R, LIN Y L, HSU W H. Drone-based object counting by spatially regularized regional proposal network[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 4145-4153. |