[1] 骆萱, 贾小林, 顾娅军. 基于Walsh码的RFID并行识别碰撞树算法[J]. 计算机应用研究, 2023, 40(12): 3651-3654.
LUO X, JIA X L, GU Y J. Collision tree algorithm of RFID parallel identification based on Walsh code[J]. Application Research of Computers, 2023, 40(12): 3651-3654.
[2] SADEGHIAN A, ALAHI A, SAVARESE S. Tracking the untrackable: learning to track multiple cues with long-term dependencies[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 300-311.
[3] SUN P, CAO J, JIANG Y, et al. Transtrack: multiple object tracking with transformer[J]. arXiv:2012.15460, 2020.
[4] ZHOU X, KOLTUN V, KR?HENBüHL P. Tracking objects as points[C]//European Conference on Computer Vision, 2020: 474-490.
[5] ZHANG Y, SUN P, JIANG Y, et al. Bytetrack: multi-object tracking by associating every detection box[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 1-21.
[6] WOJKE N, BEWLEY A , PAULUS D. Simple online and realtime tracking with a deep association metric[C]//2017 IEEE International Conference on Image Processing (ICIP), 2017: 3645-3649.
[7] KALAKE L, WANW G, HOU L. Analysis based on recent deep learning approaches applied in real-time multi-object tracking: a review[J]. IEEE Access, 2021, 9: 32650-32671.
[8] LUO W H, XING J L, MILAN A, et al. Multiple object tracking: a literature review[J]. Artificial Intelligence, 2021, 293: 103448.
[9] RAKAI L, SONG H S, SUN S J, et al. Data association in multiple object tracking: a survey of recent techniques[J]. Expert Systems with Applications, 2022, 192: 116300.
[10] WANG Z, ZHENG L, LIU Y, et al. Towards real-time multi-object tracking[C]//European Conference on Computer Vision, 2020: 107-122.
[11] ZHANG Y, WANG C, WANG X, et al. Fairmot: on the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129(11): 3069-3087.
[12] GE Z, LIU S, WANG F, et al. Yolox: exceeding yolo series in 2021[J]. arXiv:2107.08430, 2021.
[13] MILAN A, LEAL-TAIXé L, REID I, et al. MOT16: a benchmark for multi-object tracking[J]. arXiv:1603.00831, 2016.
[14] DENDORFER P, REZATOFIGHI H, MILAN A, et al. Mot20: a benchmark for multi object tracking in crowded scenes[J]. arXiv:2003.09003, 2020.
[15] FENG C J, ZHONG Y J, GAO Y, et al. TOOD: task-aligned one stage object detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2022: 3490-3499.
[16] LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for denseobject detection[J]. arXiv:2006.04388, 2020.
[17] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[18] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
[19] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[20] ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.
[21] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[22] PANG J, QIU L, LI X, et al. Quasi-dense similarity lear-ning for multiple object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 164-173.
[23] KONG L, YAN Z, ZHANG Y, et al. CFTracker: multi-object tracking with cross-frame connections in satellite videos[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61.
[24] WANG Y, KITANI K, WENG X. Joint object detection and multi-object tracking with graph neural networks[C]//2021 IEEE International Conference on Robotics and Automation (ICRA), 2021: 13708-13715.
[25] TSAI C Y, SHEN G Y, NISAR H. Swin-JDE: joint detection and embedding multi-object tracking in crowded scenes based on swin-transformer[J]. Engineering Applications of Artificial Intelligence, 2023, 119: 105770.
[26] HAN J, LI W, PAN F, et al. Spatial-attention location-aware multi-object tracking[C]//2022 41st Chinese Control Conference (CCC), 2022: 6341-6346.
[27] XU Y, BAN Y, DELORME G, et al. TransCenter: transformers with dense representations for multiple-object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(6): 7820-7835. |