[1] BíL M, ANDRá?IK R, JANO?KA Z. Identification of hazardous road locations of traffic accidents by means of kernel density estimation and cluster significance evaluation[J]. Accident Analysis & Prevention, 2013, 55: 265-273.
[2] LEE P H, TORNG C C, LIN C H, et al. Control chart pattern recognition using spectral clustering technique and support vector machine under gamma distribution[J]. Computers & Industrial Engineering, 2022, 171: 108437.
[3] YANG S, WU J, XU Y, et al. Revealing heterogeneous spatiotemporal traffic flow patterns of urban road network via tensor decomposition-based clustering approach[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 526: 120688.
[4] ZHOU Y, DAAMEN W, VELLINGA T, et al. Ship classification based on ship behavior clustering from AIS data[J]. Ocean Engineering, 2019, 175: 176-187.
[5] NAGARAJAN G, DHINESH BABU L D. Missing data imputation on biomedical data using deeply learned clustering and L2 regularized regression based on symmetric uncertainty[J]. Artificial Intelligence in Medicine, 2022, 123: 102214.
[6] RAHMAN M A, ANG L M, SENG K P. Clustering biomedical and gene expression datasets with kernel density and unique neighborhood set based vein detection[J]. Information Systems, 2020, 91: 101490.
[7] LIU X, HU C, LI P. Automatic segmentation of overlapped poplar seedling leaves combining Mask R-CNN and DBSCAN[J]. Computers and Electronics in Agriculture, 2020, 178: 105753.
[8] RUST D L, STEWART R D, WERNER T J. The duluth international airport aviation business cluster: the impact of COVID-19 and the CARES act[J]. Research in Transportation Economics, 2021, 89: 101135.
[9] 周治平, 王杰锋, 朱书伟, 等. 一种改进的自适应快速AF-DBSCAN聚类算法[J]. 智能系统学报, 2016, 11(1): 93-98.
ZHOU Z P, WANG J F, ZHU S W, et al. An improved adaptive and fast AF-DBSCAN clustering algorithm[J]. CAAI Transactions on Intelligent Systems, 2016, 11(1): 93-98.
[10] BOONCHOO T, AO X, LIU Y, et al. Grid-based DBSCAN: indexing and inference[J]. Pattern Recognition, 2019, 90: 271-284.
[11] KARAMI A, JOHANSSON R. Choosing DBSCAN parameters automatically using differential evolution[J]. International Journal of Computer Applications, 2014, 91.
[12] JIANG H, LI J, YI S, et al. A new hybrid method based on partitioning-based DBSCAN and ant clustering[J]. Expert Systems with Applications, 2011, 38(8): 9373-9381.
[13] LAI W H, ZHOU M R, HU F, et al. A new DBSCAN parameters determination method based on improved MVO[J]. IEEE Access, 2019, 7: 104085-104095.
[14] MAHDAVI M, FESANGHARY M, DAMAMGIR E. An improved harmony search algorithm for solving optimization problems[J]. Applied Mathematics and Computation, 2007, 188(2): 1567-1579.
[15] OMRAN M G H, MAHDAVI M. Global-best harmony search[J]. Applied Mathematics and Computation, 2008, 198(2): 643-656.
[16] PAN Q K, SUGANTHAN P N, TASGETIREN M F, et al. A self-adaptive global best harmony search algorithm for continuous optimization problems[J]. Applied Mathematics and Computation, 2010, 216(3): 830-848.
[17] DAS S, MUKHOPADHYAY A, ROY A, et al. Exploratory power of the harmony search algorithm: analysis and improvements for global numerical optimization[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 2011, 41(1): 89-106.
[18] ZOU D, GAO L, WU J, et al. A novel global harmony search algorithm for reliability problems[J]. Computers & Industrial Engineering, 2010, 58(2): 307-316.
[19] LI H C, ZHOU K Q, MO L P, et al. Weighted fuzzy production rule extraction using modified harmony search algorithm and BP neural network framework[J]. IEEE Access, 2020, 8: 186620-186637.
[20] MAHMOUDI S M, RAD M M, OCHBELAGH D R. Hybrid of the fuzzy logic controller with the harmony search algorithm to PWR in-core fuel management optimization[J]. Nuclear Engineering and Technology, 2021, 53(11): 3665-3674.
[21] LOOR A S, BIDGOLI M R, HAMMID M. Optimization and buckling of rupture building beams reinforced by steel fibers on the basis of adaptive improved harmony search-harmonic differential quadrature methods[J]. Case Studies in Construction Materials, 2021, 15: e00647.
[22] GUPTA S. Enhanced harmony search algorithm with non-linear control parameters for global optimization and engineering design problems[J]. Engineering with Computers, 2022, 38(4): 3539-3562.
[23] ZHU Q, TANG X, ELAHI A. Application of the novel harmony search optimization algorithm for DBSCAN clustering[J]. Expert Systems with Applications, 2021, 178: 115054.
[24] 万佳, 胡大裟, 蒋玉明. 多密度自适应确定DBSCAN算法参数的算法研究[J]. 计算机工程与应用, 2022, 58(2): 78-85.
WAN J, HU D S, JIANG Y M. Research on method of multi-density self-adaptive determination of DBSCAN algorithm parameters[J]. Computer Engineering and Applications, 2022, 58(2): 78-85.
[25] 李文杰, 闫世强, 蒋莹, 等. 自适应确定DBSCAN算法参数的算法研究[J]. 计算机工程与应用, 2019, 55(5): 1-7.
LI W J, YAN S Q, JIANG Y, et al. Research on method of self-adaptive determination of DBSCAN algorithm parameters[J]. Computer Engineering and Applications, 2019, 55(5): 1-7.
[26] 张文宇, 治瑜, 秦乐. 基于改进天牛群优化的DBSCAN聚类算法[J]. 统计与决策, 2022, 38(10): 20-25.
ZHANG W Y, ZHI Y, QIN L. DBSCAN clustering algorithm based on improved beetle swarm optimization[J]. Statistics and Decision, 2022, 38(10): 20-25.
[27] LIN M, WANG Z, CHEN D, et al. Particle swarm-differential evolution algorithm with multiple random mutation[J]. Applied Soft Computing, 2022, 120: 108640. |