计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (3): 94-99.DOI: 10.3778/j.issn.1002-8331.1905-0139
李道全,王雪,于波,黄泰铭
LI Daoquan, WANG Xue, YU Bo, HUANG Taiming
摘要: 针对传统机器学习算法对于流量分类的瓶颈问题,提出基于一维卷积神经网络模型的应用程序流量分类算法。将网络流量数据集进行数据预处理,去除无关数据字段,并使数据满足卷积神经网络的输入特性。设计了一种新的一维卷积神经网络模型,从网络结构、超参数空间以及参数优化方面入手构造了最优分类模型。该模型通过卷积层自主学习数据特征,解决了传统基于机器学习的流量分类算法中特征选择问题。通过网络公开数据集进行模型测试,相比于传统的一维卷积神经网络模型,所设计的神经网络模型的分类准确率提升了16.4%,总分类时间节省了71.48%。另外在类精度、召回率以及[F1]分数方面都有较好的提升。