[1] NGUYEN T T, YANG S, BRANKE J. Evolutionary dynamic optimization: a survey of the state of the art[J]. Swarm and Evolutionary Computation, 2012, 6: 1-24.
[2] DANG D C, JANSEN T, LEHRE P K. Populations can be essential in tracking dynamic optima[J]. Algorithmica, 2017, 78: 660-680.
[3] YANG S, LI C. A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(6): 959-974.
[4] YANG S. Evolutionary computation for dynamic optimization problems[C]//Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, 2013: 667-682.
[5] YU X, JIN Y, TANG K, et al. Robust optimization over time—a new perspective on dynamic optimization problems[C]//IEEE Congress on Evolutionary Computation, 2010: 1-6.
[6] FU H, SENDHOFF B, TANG K, et al. Finding robust solutions to dynamic optimization problems[C]//Proceedings of 16th European Conference on Applications of Evolutionary Computation: (EvoApplications 2013), Vienna, Austria, April 3-5, 2013. Berlin, Heidelberg: Springer, 2013: 616-625.
[7] JIN Y, TANG K, YU X, et al. A framework for finding robust optimal solutions over time[J]. Memetic Computing, 2013, 5: 3-18.
[8] YAZDANI D, BRANKE J, OMIDVAR M N, et al. Changing or keeping solutions in dynamic optimization problems with switching costs[C]//Proceedings of the Genetic and Evolutionary Computation Conference, 2018: 1095-1102.
[9] NOVOA-HERNáNDEZ P, PELTA D A, CORONA C C. Approximation models in robust optimization over time-an experimental study[C]//2018 IEEE Congress on Evolutionary Computation (CEC), 2018: 1-6.
[10] YAZDANI D, NGUYEN T T, BRANKE J. Robust optimization over time by learning problem space characteristics[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(1): 143-155.
[11] ADAM L, YAO X. A simple yet effective approach to robust optimization over time[C]//2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019: 680-688.
[12] FOX M, YANG S, CARAFFINI F. An experimental study of prediction methods in robust optimization over time[C]//2020 IEEE Congress on Evolutionary Computation (CEC), 2020: 1-7.
[13] ZHANG X, FANG Y, LIU Q. Finding robust pareto-optimal solutions over time for dynamic disassembly sequence planning[C]//International Manufacturing Science and Engineering Conference, 2022
[14] GUZMáN-GASPAR J Y, MEZURA-MONTES E, DOMíNGUEZ-ISIDRO S. Differential evolution in robust optimization over time using a survival time approach[J]. Mathematical and Computational Applications, 2020, 25(4): 72.
[15] YAZDANI Danial, YAZDANI Donya, BRANKE J, et al. Robust optimization over time by estimating robustness of promising regions[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(3): 657-670.
[16] CHEN M, GUO Y, JIN Y, et al. An environment-driven hybrid evolutionary algorithm for dynamic multi-objective optimization problems[J]. Complex & Intelligent Systems, 2023, 9(1): 659-675.
[17] BOX G E P, JENKINS G M, REINSEL G C, et al. Time series analysis: forecasting and control[M]. [S.l.]: John Wiley & Sons, 2015.
[18] SAPANKEVYCH N I, SANKAR R. Time series prediction using support vector machines: a survey[J]. IEEE Computational Intelligence Magazine, 2009, 4(2): 24-38.
[19] YAZDANI D, NGUYEN T T, BRANKE J, et al. A new multi-swarm particle swarm optimization for robust optimization over time[C]//Proceedings of 20th European Conference on Applications of Evolutionary Computation(EvoApplications 2017), Amsterdam, The Netherlands, April 19-21, 2017: 99-109.
[20] FU H, SENDHOFF B, TANG K, et al. Robust optimization over time: problem difficulties and benchmark problems[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(5): 731-745.
[21] GUO Y, CHEN M, FU H, et al. Find robust solutions over time by two-layer multi-objective optimization method[C]//2014 IEEE Congress on Evolutionary Computation (CEC), 2014: 1528-1535.
[22] HUANG Y, DING Y, HAO K, et al. A multi-objective approach to robust optimization over time considering switching cost[J]. Information Sciences, 2017, 394: 183-197.
[23] FOX M, YANG S, CARAFFINI F. A new moving peaks benchmark with attractors for dynamic evolutionary algorithms[J]. Swarm and Evolutionary Computation, 2022, 74: 101125.
[24] 黄元君. 不确定环境下的群智能时域鲁棒优化研究[D]. 上海: 东华大学, 2018.
HUANG Y J. Robust optimization over time in uncertain environments using swarm intelligence[D]. Shanghai: Donghua University, 2018.
[25] 尉书睿. 动态约束鲁棒进化优化方法[D]. 徐州: 中国矿业大学, 2021.
WEI S R. Dynamic constrained robust evolutionary optimization method[D]. Xuzhou: China University of Mining & Technology, 2021. |