计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (5): 78-86.DOI: 10.3778/j.issn.1002-8331.2111-0423
王晓艳,曹德欣
WANG Xiaoyan, CAO Dexin
摘要: 针对粒子群优化算法易早熟收敛、求解精度低等缺点,提出基于进化能力的多策略粒子群优化算法(multi-strategy particle swarm optimization algorithm based on evolution ability)。将粒子按照适应值变化方向分为进步粒子和停退粒子。对于进步粒子按照原始进化策略更新,保留原算法的优点。对于停退粒子进一步根据粒子活性分为暂时停退粒子和长久停退粒子,针对暂时停退的粒子,减小对个体历史速度的依赖甚至向相反方向学习,针对长久停退粒子,根据粒子的适应值优劣采用不同的进化策略,提高全局寻优能力。同时,设计一种带随机波动的惯性权重,使粒子在算法后期仍然具有跳出当前区域的能力,利于全局搜索。通过与其他算法在10个测试函数不同维度上的优化结果对比表明,该算法无论对低维还是高维问题求解的收敛速度和求解精度均有优势。将EAMSPSO算法应用于半无限规划问题的求解,实验结果表明,该算法可以用于半无限规划问题的求解,且具有优势。