计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (5): 87-94.DOI: 10.3778/j.issn.1002-8331.2206-0476
范劭博,张中杰,黄健
FAN Shaobo, ZHANG Zhongjie, HUANG Jian
摘要: 传统关联规则挖掘在面临分类决策问题时,易出现非频繁规则遗漏、预测精度不高的问题。为得到正确合理且更为完整的规则,提出了一种改进方法DT-AR(decision tree-association rule algorithm),利用决策树剪枝策略对关联规则集进行补充。该方法利用FP-Growth(frequent pattern growth)算法得到关联规则集,利用C4.5算法构建后剪枝决策树并提取分类规则,在进行置信度迭代筛选后与关联规则集取并集修正,利用置信度作为权重系数采取投票法进行分类。实验结果表明,与传统关联规则挖掘和决策树剪枝方法相比,该方法得到的规则在数据集分类结果上更准确。