计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (15): 52-67.DOI: 10.3778/j.issn.1002-8331.2202-0114
周慧颖,汪廷华,张代俐
出版日期:
2022-08-01
发布日期:
2022-08-01
ZHOU Huiying, WANG Tinghua, ZHANG Daili
Online:
2022-08-01
Published:
2022-08-01
摘要: 特征选择一直是机器学习和数据挖掘中的一个重要问题。在多标签学习任务中,数据集中的每个样本都与多个标签相关联,标签与标签之间通常也是相关的。在多标签高维数据分析中,为降低特征维数和提高分类性能,研究者们提出了多标签特征选择方法。系统综述了多标签特征选择的研究进展。在介绍多标签分类以及评价准则之后,详细分析了多标签特征选择的三类方法,即过滤式算法、包裹式算法和嵌入式算法,对多标签特征选择未来的研究提出展望。
周慧颖, 汪廷华, 张代俐. 多标签特征选择研究进展[J]. 计算机工程与应用, 2022, 58(15): 52-67.
ZHOU Huiying, WANG Tinghua, ZHANG Daili. Research Progress of Multi-Label Feature Selection[J]. Computer Engineering and Applications, 2022, 58(15): 52-67.
[1] TSOUMAKAS G,KATAKIS I,VLAHAVAS I.Mining multi-label data[M].Boston:Data Mining and Knowledge Discovery Handbook,2010:667-685. [2] LEWIS D D,YANG Y,ROSE T G,et al.RCV1:a new benchmark collection for text categorization research[J].Journal of Machine Learning Research,2004,5:361-397. [3] ZHANG M L,ZHOU Z H.A review on multi-label learning algorithms[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(8):1819-1837. [4] GIBAJA E,VENTURA S.A tutorial on multi-label learning[J].ACM Computing Surveys,2015,47(3):1-38. [5] JIANG J Y,TSAI S C,LEE S J.FSKNN:multi-label text categorization based on fuzzy similarity and k nearest neighbors[J].Expert Systems with Applications,2012,39(3):2813-2821. [6] ZHANG M L,ZHOU Z H.Multilabel neural networks with applications to functional genomics and text categorization[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(10):1338-1351. [7] SANDEN C,ZHANG J Z.Enhancing multi-label music genre classification through ensemble techniques[C]// Proceedings of the 34th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,Beijing,China,July 25-29,2011.New York:ACM,2011:705-714. [8] HOU S,ZHOU S,CHEN L,et al.Multi-label learning with label relevance in advertising video[J].Neurocomputing,2016,171:932-948. [9] TROCHIDIS K,TSOUMAKAS G,KALLIRISK G,et al.Multilabel classification of music into emotions[C]//Proceedings of the 9th International Conference on Music Information Retrieval,Philadelphia,September 14-18,2008. [10] BOUTELL M R,LUO J,SHEN X,et al.Learning multi-label scene classification[J].Pattern Recognition,2004,37(9):1757-1771. [11] KOMPAS T,HA P V.The ‘curse of dimensionality’ resolved:the effects of climate change and trade barriers in large dimensional modeling[J].Economic Modelling,2019,80:103-110. [12] SONG L,SMOLA A J,GRETTON A,et al.Feature selection via dependence maximization[J].Journal of Machine Learning Research,2012,13:1393-1434. [13] LI J,CHENG K,WANG S,et al.Feature selection:a data perspective[J].ACM Computing Surveys,2018,50(6):1-45. [14] 赵泽渊,代永强.改进混合二进制蝗虫优化特征选择算法[J].计算机科学与探索,2021,15(7):1339-1349. ZHAO Z Y,DAI Y Q.Improved shuffled binary grasshopper optimization feature selection algorithm[J].Journal of Frontiers of Computer Science and Technology,2021,15(7):1339-1349. [15] LIU H,YU L.Toward integrating feature selection algorithms for classification and clustering[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(4):491-502. [16] TSOUMAKAS G,KATAKIS I.Multi-label classification:an overview[J].International Journal of Data Warehousing and Mining,2007,3(3):1-13. [17] READ J,PFAHRINGER B,HOLMES G,et al.Classifier chains for multi-label classification[J].Machine Learning,2011,85(3):333-359. [18] 付彬,王志海.基于树型依赖结构的多标记分类算法[J].模式识别与人工智能,2012,25(4):573-580. FU B,WANG Z H.A multi-label classification method based on tree structure of label dependency[J].Pattern Recognition and Artificial Intelligence,2012,25(4):573-580. [19] 陈瑀.基于梯度提升的多标签分类器链算法[D].重庆:重庆邮电大学,2020. CHEN Y.Multi-label classification via classifier chain and gradient boosting[D].Chongqing:Chongqing University of Posts and Telecommunications,2020. [20] LEE J,KIM H,KIM N,et al.An approach for multi-label classification by directed acyclic graph with label correlation maximization[J].Information Sciences,2016,351:101-114. [21] TSOUMAKAS G,VLAHAVAS I.Random?k-Labelsets:an ensemble method for multilabel classification[C]//Proceedings of the 18th European Conference on Machine Learning,Warsaw,September 17-21,2007.Berlin,Heidelberg:Springer,2007:406-417. [22] LO H Y,LIN S D,WANG H M.Generalized k-labelsets ensemble for multi-label and cost-sensitive classification[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(7):1679-1691. [23] READ J.A pruned problem transformation method for multi-label classification[C]//Proceedings of 2008 New Zealand Computer Science Research Student Conference,New Zealand,January,2008:143-150. [24] SCHAPIRE R E,SINGER Y.BoosTexter:a boosting-based system for text categorization[J].Machine Learning,2000,39(2/3):135-168. [25] ZHANG M L,ZHOU Z H.ML-KNN:a lazy learning approach to multi-label learning[J].Pattern Recognition,2006,40(7):2038-2048. [26] 张敏灵.一种新型多标记懒惰学习算法[J].计算机研究与发展,2012,49(11):2271-2282. ZHANG M L.An improved multi-label lazy learning approach[J].Journal of Computer Research and Development,2012,49(11):2271-2282. [27] CLARE A,KING R D.Knowledge discovery in multi-label phenotype data[C]//Proceedings of the International Conference on Neural Information Processing,Lecture Notes in Computer Science,Freiburg,Germany,September 3-5,2001.Berlin,Heidelberg:Springer,2001:42-53. [28] CRAMMER K,SINGER Y.A family of additive online algorithms for category ranking[J].Journal of Machine Learning Research,2003,3:1025-1058. [29] ELISSEEFF A,WESTON J.A kernel method for multi-labelled classification[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic,Vancouver,December 3-8 2001.Cambridge:MIT Press,2002:681-687. [30] XU J.An efficient multi-label support vector machine with a zero label[J].Expret Systems with Application,2011,39(5):4796-4804. [31] 吴磊,张敏灵.基于类属属性的多标记学习算法[J].软件学报,2014,25(9):1992-2001. WU L,ZHANG M L.Label-specific features on multi-label learning algorithm[J].Journal of Software,2014,25(9):1992-2001. [32] 蔡剑,牟甲鹏,余孟池,等.基于特征选择和标签相关性的多标签分类算法[J].计算机与数字工程,2021,49(10):1967-1972. CAI J,MOU J P,YU M C,et al.Multi-label classification algorithm based on feature selection and label-correlation[J].Computer & Digital Engineering,2021,49(10):1967-1972. [33] 杨阳.基于标签空间相关性的改进分类器链算法[D].重庆:重庆邮电大学,2019. YANG Y.An improved multi-label classifier chain algorithm via label space correlation[D].Chongqing:Chongqing University of Posts and Telecommunications,2019. [34] WANG Z,WANG T,WANG B,et al.Partial classifier chains with feature selection by exploiting label correlation in multi-label classification[J].Entropy,2020,22(10):1143. [35] DOQUIRE G,VERLEYSEN M.Feature selection for multi-label classification problems[C]//Proceedings of the 11th International Work-Conference on Artificial Neural Networks Conference on Advances in Computational Intelligence,Torremolinos-Málaga,June 8-10,2011.Berlin,Heidelberg:Springer,2011:9-16. [36] REYES O,MORELL C,VENTURA S.Scalable extensions of the ReliefF algorithm for weighting and selecting features on the multi-label learning context[J].Neurocomputing,2015,161:168-182. [37] KONG D,DING C,HUANG H,et al.Multi-label ReliefF and F-statistic feature selections for image annotation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Providence,USA,16-21 June 2012.Piscataway,NJ:IEEE,2012:2352-2359. [38] 马晶莹,宣恒农.扩展ReliefF的两种多标签特征选择算法[J].计算机应用与软件,2017,34(7):298-302. MA J Y,XUAN H N.Two feature selection algorithms for multi-label classification by extended ReliefF[J].Computer Applications and Software,2017,34(7):298-302. [39] XIE Y,LI D,ZHANG D,et al.An improved multi-label Relief feature selection algorithm for unbalanced datasets[C]//Proceedings of the Advances in Intelligent Systems and Interactive Applications,Beijing,June 17-18,2017.Cham:Springer,2018:141-151. [40] SUN L,YIN T,DING W,et al.Multilabel feature selection using ML-ReliefF and neighborhood mutual information for multilabel neighborhood decision systems[J].Information Sciences,2020,537:401-424. [41] 孙林,陈雨生,徐久成.基于改进ReliefF的多标记特征选择算法[J].山东大学学报(理学版),2022,57(4):1-11. SUN L,CHEN Y S,XU J C.Multi-label feature selection algorithm based on improved ReliefF[J].Journal of Shandong University(Nature Science),2022,57(4):1-11. [42] SLAVKOV I,KARCHESKA J,KOCEV D,et al.ReliefF for hierarchical multi-label classification[C]//Proceedings of the International Conference on Neural Information Processing,Prague,September 27,2013.Cham:Springer,2014:148-161. [43] GONZALEZ-LOPEZ J,VENTURA S,CANO A.Distributed multi-label feature selection using individual mutual information measures[J].Knowledge-Based Systems,2020,188(C):105052. [44] LEE J,KIM D W.Feature selection for multi-label classification using multivariate mutual information[J].Pattern Recognition Letters,2013,34(3):349-357. [45] DOQUIRE G,VERLEYSEN M.Mutual information-based feature selection for multilabel classification[J].Neurocomputing,2013,122:148-155. [46] LIN Y,HU Q,LIU J,et al.Multi-label feature selection based on max-dependency and min-redundancy[J].Neurocomputing,2015,168:92-103. [47] 徐洪峰,孙振强.多标签学习中基于互信息的快速特征选择方法[J].计算机应用,2019,39(10):2815-2821. XU H F,SUN Z Q.Fast feature selection method based on mutual information in multi-label learning[J].Journal of Computer Applications,2019,39(10):2815-2821. [48] LIM H,LEE J,KIM D W.Optimization approach for feature selection in multi-label classification[J].Pattern Recognition Letters,2017,89:25-30. [49] 张平.基于多标签的特征选择算法研究[D].长春:吉林大学,2021. ZHANG P.Research on feature selection algorithm based on multi-label[D].Changchun:Jilin University,2021. [50] 李田力,陈飞,江家宝.标记不平衡性的多标记粗糙互信息特征选择[J].忻州师范学院学报,2021,37(5):42-48. LI T L,CHEN F,JIANG J B.Multi-label feature selection use rough mutual information with imbalance label[J].Journal of Xinzhou Teachers University,2021,37(5):42-48. [51] 张毅斌,马盈仓.基于模糊互信息的多标签特征选择[J].河南科学,2019,37(4):521-527. ZHANG Y B,MA Y C.Multi-label feature selection based on fuzzy mutual information[J].Henan Science,2019,37(4):521-527. [52] XIONG C,QIAN W,WANG Y,et al.Feature selection based on label distribution and fuzzy mutual information[J].Information Sciences,2021,574:297-319. [53] 李雨晨,魏巍,白伟明,等.基于标签共现关系的多标签特征选择[J].计算机工程与科学,2021,43(11):2049-2055. LI Y C,WEI W,BAI W M,et al.Multi-label feature selection based on label co-occurrence relationship[J].Computer Engineering & Science,2021,43(11):2049-2055. [54] 刘杰,张平,高万夫.基于条件相关的特征选择方法[J].吉林大学学报(工学版),2018,48(3):874-881. LIU J,ZHANG P,GAO W F.Feature selection method based on condition relevance[J].Journal of Jilin University(Engineering and Technology Edition),2018,48(3):874-881. [55] 程玉胜,宋帆,王一宾,等.基于专家特征的条件互信息多标记特征选择算法[J].计算机应用,2020,40(2):503-509. CHENG Y S,SONG F,WANG Y B,et al.Multi-label feature selection algorithm on conditional mutual information of expert feature[J].Journal of Computer Applications,2020,40(2):503-509. [56] SHA Z C,LIU Z M,MA C,et al.Feature selection for multi-label classification by maximizing full-dimensional conditional mutual information[J].Applied Intelligence,2021,51:326-340. [57] GU X,GUO J,XIAO L,et al.Conditional mutual information-based feature selection algorithm for maximal relevance minimal redundancy[J].Applied Intelligence,2021,52:1436-1447. [58] 陈福才,李思豪,张建朋,等.基于标签关系改进的多标签特征选择算法[J].计算机科学,2018,45(6):228-234. CHEN F C,LI S H,ZHANG J P,et al.Multi-label feature selection algorithm based on improved label correlation[J].Computer Science,2018,45(6):228-234. [59] 白伟明.标签加权的多标签特征选择算法研究[D].太原:山西大学,2021. BAI W M.Research on label weighted multi-label feature selection algorithm[D].Taiyuan:Shanxi University,2021. [60] 孟威.结合互信息和特征标签关系的多标签特征选择研究[D].漳州:闽南师范大学,2021. MENG W.The research of multilabel feature selection based on mutual information and feature label relationship[D].Zhangzhou:Minnan Normal University,2021. [61] PENG H,LONG F,DING C.Feature selection based on mutual information:criteria of max-dependency,max-relevance,and min-redundancy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1226-1238. [62] 胡学钢,许尧,李培培,等.一种过滤式多标签特征选择算法[J].南京大学学报(自然科学),2015,51(4):723-730. HU X G,XU Y,LI P P,et al.A filter multi-label feature selection algorithm[J].Journal of Nanjing University(Natural Science),2015,51(4):723-730. [63] 张俐,王枞.基于最大相关最小冗余联合互信息的多标签特征选择算法[J].通信学报,2018,39(5):111-122. ZHANG L,WANG Z.Multi-label feature selection algorithm based on joint mutual information of max-relevance and min-redundancy[J].Journal of Communications,2018,39(5):111-122. [64] 李顺勇,王改变.一种新的最大相关最小冗余特征选择算法[J].智能系统学报,2021,16(4):649-661. LI S Y,WANG G B.New MRMR feature selection algorithm[J].CAAI Transactions on Intelligent Systems,2021,16(4):649-661. [65] 张东方,陈海燕,袁立罡.S2R2:基于相关性与冗余性分析的半监督特征选择[J].计算机与现代化,2021(9):113-120. ZHANG D F,CHEN H Y,YUAN L G.S2R2:semi-supervised feature selection based on analysis of relevance and redundancy[J].Computer and Modernization,2021(9):113-120. [66] GRETTON A,BOUSQUET O,SMOLA A,et al.Measuring statistical dependence with Hilbert-Schmidt norms[C]//Proceedings of the 16th International Conference on Algorithmic Learning Theory,Singapore,October 8-11,2005.Berlin,Heidelberg:Springer,2005:63-78. [67] XU J.Effective and efficient multi-label feature selection approaches via modifying Hilbert-Schmidt independence criterion[C]//Proceedings of the International Conference on Neural Information Processing,Kyoto,October 16-21,2016.Cham:Springer,2016:385-395. [68] LIU C,MA Q,XU J.Multi-label feature selection method combining unbiased Hilbert-Schmidt independence criterion with controlled genetic algorithm[C]//Proceedings of the International Conference on Neural Information Processing,Lecture Notes in Computer Science,Siem Reap,December 13-16,2018.Cham:Springer,2018:3-14. [69] 张晨光,张燕,张夏欢.从希尔伯特-施密特独立性中学习的多标签半监督学习方法[J].中国科技论文,2013,8(10):998-1002. ZHANG C G,ZHANG Y,ZHANG X H.Multi-label semi-supervised learning method learnt from Hilbert-Schmidt independence criterion[J].China Sciencepaper,2013,8(10):998-1002. [70] 王立鹏.面向图数据的特征选择方法及其应用研究[D].南京:南京航空航天大学,2015. WANG L P.Feature selection method for graph data and its applications[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2015. [71] 王礼琴.半监督多标记特征选择算法研究[D].长沙:湖南师范大学,2019. WANG L Q.Research on semi-supervised multi-label feature selection algorithm[D].Changsha:Hunan Normal University,2019. [72] LI G,LI Y,ZHENG Y,et al.A novel feature selection approach with Pareto optimality for multi-label data[J].Applied Intelligence,2021,51(11):1-18. [73] LI G,LI Y,ZHENG Y.A novel multi-label feature selection based on pareto optimality[C]//Proceedings of the International Conference on Natural Computation,Fuzzy Systems and Knowledge Discovery,Xi’an,August 1-3,2020.Cham:Springer,2021:1010-1016. [74] PUPO O G R,MORELL C,SOTO S V S.ReliefF-ML:an extension of ReliefF algorithm to multi-label learning[C]//Proceedings of the International Conference on Neural Information Processing,Havana,November 20-23,2013.Berlin,Heidelberg:Springer,2013:528-535. [75] SLAVKOV I,KARCHESKA J,KOCEV D,et al.HMC-ReliefF:feature ranking for hierarchical multi-label classification[J].Computer Science and Information Systems,2018,15:187-209. [76] LI F,MIAO D,PEDRYCZ W.Granular multi-label feature selection based on mutual information[J].Pattern Recognition,2017,67:410-423. [77] SUN Z,ZHANG J,DAI L,et al.Mutual information based multi-label feature selection via constrained convex optimization[J].Neurocomputing,2019,329:447-456. [78] SHI E,SUN L,XU J,et al.Multilabel feature selection using mutual information and ML-ReliefF for multilabel classification[J].IEEE Access,2020,8:145381-145400. [79] 潘敏澜,孙占全,王朝立,等.结合标签集语义结构的多标签特征选择算法[J/OL].小型微型计算机系统:1-8[2021-12-18].http://kns.cnki.net/kcms/detail/21.1106.TP.20211102. 1144.004.html. PAN M L,SUN Z Q,WANG C L,et al.Multi-label feature selection algorithm based on semantic structure of label set[J/OL].Journal of Chinese Computer Systems:1-8[2021-12-18].http://kns.cnki.net/kcms/detail/21.1106.TP. 20211102.1144.004.html [80] ZHANG P,LIU G,CAO W,et al.Multi-label feature selection considering label supplementation[J].Pattern Recognition,2021,120:108137. [81] KONG X,YU P S.gMLC:a multi-label feature selection framework for graph classification[J].Knowledge and Information Systems,2012,31(2):281-305. [82] 李程文.基于HSIC的多标签图数据特征选择算法研究[D].广州:广东工业大学,2017. LI C W.Feature selection algorithm research for multi-label graph data based on HSIC[D].Guangzhou:Guangdong University of Technology,2017. [83] LI R,ZHANG Y,LU Z,et al.Technique of image retrieval based on multi-label image annotation[C]//Proceedings of the 2010 Second International Conference on Multimedia and Information Technology,Kaifeng,April 24-25,2010.Piscataway,NJ:IEEE,2010:10-13. [84] 邵欢,李国正,刘国萍,等.多标记中医问诊数据的症状选择[J].中国科学:信息科学,2011,41(11):1372-1387. SHAO H,LI G Z,LIU G P,et al.Symptom selection for multi-label data of inquiry diagnosis in traditional Chinese medicine[J].Scientia Sinica Informationis,2011,41(11):1372-1387. [85] 李玲.多标签分类中特征选择算法研究[D].杭州:浙江师范大学,2015. LI L.A study of feature selection for multi-label classification[D].Hangzhou:Zhejiang Normal University,2015. [86] LEE J,KIM D W.Memetic feature selection algorithm for multi-label classification[J].Information Sciences,2015,293:80-96. [87] YIN J,TAO T,XU J.A multi-label feature selection algorithm based on multi-objective optimization[C]// Proceedings of the 2015 International Joint Conference on Neural Networks,Killarney,July 12-17,2015.Piscataway,NJ:IEEE,2015:1-7. [88] LIM H,KIM D W.MFC:initialization method for multi-label feature selection based on conditional mutual information[J].Neurocomputing,2020,382(C):40-51. [89] ZHANG Y,GONG D W,RONG M.Multi-objective differential evolution algorithm for multi-label feature selection in classification[C]//Proceedings of the International Conference on Neural Information Processing,Beijing,June 25-28,2015.Cham:Springer,2015:339-345. [90] ZHANG Y,GONG D W,SUN X Y,et al.A PSO-based multi-objective multi-label feature selection method in classification[J].Scientific Reports,2017,7(1):376. [91] PAUL D,JAIN A,SAHA S,et al.Multi-objective PSO based online feature selection for multi-label classification[J].Knowledge-Based Systems,2021,222:106966. [92] 叶苏荷.多标签分类器链中基于贝叶斯网络的标签关联性分析与特征选择[D].深圳:深圳大学,2020. YE S H.Bayesian network based label correlation analysis and feature selection for multi-label classifier chain[D].Shenzhen:Shenzhen University,2020. [93] WANG R,YE S,LI K,et al.Bayesian network based label correlation analysis for multi-label classifier chain[J].Information Sciences,2020,554:256-275. [94] 何牧宇,周晖.ReliefF-MFO多标签特征选择算法[J].计算机工程与设计,2019,40(12):3469-3473. HE M Y,ZHOU H.ReliefF-MFO multi-label feature selection algorithm[J].Computer Engineering and Design,2019,40(12):3469-3473. [95] 李钰雯.基于模糊粗糙集模型的特征选择方法研究[D].厦门:厦门大学,2019. LI Y W.Research on feature selection with fuzzy rough sets[D].Xiamen:Xiamen University,2019. [96] ZHA Z J,MEI T,WANG J,et al.Graph-based semi-supervised learning with multiple labels[J].Journal of Visual Communication and Image Representation,2008,20(2):97-103. [97] CHANG X,NIE F,YANG Y,et al.A convex formulation for semi-supervised multi-label feature selection[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence,Québec,July 27-31,2014.Palo Alto CA:Association for the Advancement of Artificial Intelligence(AAAI),2014:1171-1177. [98] CHANG X,SHEN H,WANG S,et al.Semi-supervised feature analysis for multimedia annotation by mining label correlation[C]//Proceedings of the International Conference on Neural Information Processing,Tainan,May 13-16,2014.Cham:Springer,2014:74-85. [99] JIANG L,WANG J,YU G.Semi-supervised multi-label feature selection based on sparsity regularization and dependence maximization[C]//Proceedings of the 2018 9th International Conference on Intelligent Control and Information Processing,Wanzhou,November 9-11,2018.Piscataway,NJ:IEEE,2018:325-332. [100] HU L,LI Y,GAO W,et al.Multi-label feature selection with shared common mode[J].Pattern Recognition,2020,104:107344. [101] 凌云志.基于稀疏学习的多标签特征选择算法研究[D].长春:吉林大学,2020. LING Y Z.Research on multi-label feature selection algorithm based on sparse learning[D].Changchun:Jilin University,2020. [102] ZHU Y,KWOK J T,ZHOU Z,et al.Multi-label learning with global and local label correlation[J].IEEE Transactions on Knowledge and Data Engineering,2018,30:1081-1084. [103] FAN Y,LIU J,WENG W,et al.Multi-label feature selection with local discriminant model and label correlations[J].Neurocomputing,2021,442:98-115. [104] 陈红,杨小飞,万青,等.基于相关熵和流形学习的多标签特征选择算法[J].山东大学学报(工学版),2018,48(6):27-36. CHEN H,YANG X F,WAN Q,et al.Multi-label feature selection algorithm based on correntropy and manifold learning[J].Journal of Shandong University(Engineering Science),2018,48(6):27-36. [105] 陈红.嵌入式多标签特征选择算法研究[D].西安:西安工程大学,2019. CHEN H.Research on embedded multi-label feature selection algorithm[D].Xi’an:Xi’an University of Engineering,2019. [106] ZHANG J,LUO Z,LI C,et al.Manifold regularized discriminative feature selection for multi-label learning[J].Pattern Recognition,2019,95:136-150. [107] 张要,马盈仓,杨小飞,等.结合流形结构与柔性嵌入的多标签特征选择[J].山东大学学报(理学版),2021,56(7):91-102. ZHANG Y,MA Y C,YANG X F,et al.Multi-label feature selection based on manifold structure and flexible embedding[J].Journal of Shandong University(Natural Science),2021,56(7):91-102. [108] 张要,马盈仓,朱恒东,等.结合流形学习与逻辑回归的多标签特征选择[J].计算机工程,2022,48(3):90-99. ZHANG Y,MA Y C,ZHU H D,et al.Multi-label feature selection combining manifold learning and logistic regression[J].Computer Engineering,2022,48(3):90-99. [109] 马盈仓,张要,张宁,等.基于流形学习与L2,1范数的无监督多标签特征选择[J].纺织高校基础科学学报,2021,34(3):102-111. MA Y C,ZHANG Y,ZHANG N,et al.Unsupervised multi-label feature selection based on manifold learning and L2,1 norm[J].Basic Sciences Journal of Textile Universities,2021,34(3):102-111. [110] FAN Y,LIU J,WENG W,et al.Multi-label feature selection with constraint regression and adaptive spectral graph[J].Knowledge-Based Systems,2021,212:106621. [111] LI G Z,YOU M,GE L,et al.Feature selection for semi-supervised multi-label learning with application to gene function analysis[C]//Proceeding of the 1st ACM Internation Conference on Bioinformatics and Computational Biology,Niagara Falls New York,August 2-4,2010.New York:Association for Computing Machinery,2010:354-357. [112] GU Q,LI Z,HAN J.Correlated multi-label feature selection[C]//Proceedings of the 20th ACM International Conference on Information and Knowledge Management,Glasgow Scotland,October 24-28,2011.New York:Association for Computing Machinery,2011:1087-1096. [113] YOU M,LIU J,LI G Z,et al.Embedded feature selection for multi-label classification of music emotions[J].International Journal of Computational Intelligence Systems,2012,5(4):668-678. [114] HUANG J,LI G,HUANG Q,et al.Joint Feature selection and classification for multilabel learning[J].IEEE Transactions on Cybernetics,2018,48(3):876-889. [115] ZHANG M L,PE?A J M,ROBLES V.Feature selection for multi-label naive Bayes classification[J].Information Sciences,2009,179(19):3218-3229. [116] LI G Z,YANG J Y.Feature selection for ensemble learning and its application[M].Machine Learning in Bioinformatics,2008:135-155. [117] KASHEF S,NEZAMABADI-POUR H.An effective method of multi-label feature selection employing evolutionary algorithms[C]//Proceedings of the 2017 2nd Conference on Swarm Intelligence and Evolutionary Computation,Kerman,March 7-9 2017.Piscataway,NJ:IEEE,2017:21-25. |
[1] | 汪玉, 王鑫, 张淑娟, 郑国强, 赵龙, 郑高峰. 异构大数据环境中高效率知识融合方法的研究[J]. 计算机工程与应用, 2022, 58(6): 142-148. |
[2] | 卢冰洁, 李炜卓, 那崇宁, 牛作尧, 陈奎. 机器学习模型在车险欺诈检测的研究进展[J]. 计算机工程与应用, 2022, 58(5): 34-49. |
[3] | 赵珍珍, 董彦如, 曹慧, 曹斌. 老年人跌倒检测算法的研究现状[J]. 计算机工程与应用, 2022, 58(5): 50-65. |
[4] | 黄彦乾, 迟冬祥, 徐玲玲. 面向小样本学习的嵌入学习方法研究综述[J]. 计算机工程与应用, 2022, 58(3): 34-49. |
[5] | 崔鑫, 徐华, 朱亮. 面向不均衡数据的多分类集成算法[J]. 计算机工程与应用, 2022, 58(2): 176-183. |
[6] | 李郅琴, 杜建强, 聂斌, 熊旺平, 徐国良, 罗计根, 李冰涛. 基于黑寡妇算法的特征选择方法研究[J]. 计算机工程与应用, 2022, 58(16): 147-156. |
[7] | 孙超, 闻敏, 李鹏祖, 李瑶, Ibegbu Nnamdi JULIAN, 郭浩. 基于相对极差的不确定脑网络特征提取与分类[J]. 计算机工程与应用, 2022, 58(14): 126-133. |
[8] | 牛红丽, 赵亚枝. 利用Bagging算法和GRU模型预测股票价格指数[J]. 计算机工程与应用, 2022, 58(12): 132-138. |
[9] | 段刚龙, 王妍, 马鑫, 杨泽阳. 银行客户分类的数据特征选择方法与实证研究[J]. 计算机工程与应用, 2022, 58(11): 302-312. |
[10] | 马明艳, 陈伟, 吴礼发. 基于CNN_BiLSTM网络的入侵检测方法[J]. 计算机工程与应用, 2022, 58(10): 116-124. |
[11] | 谢鑫, 张贤勇, 杨霁琳. 融合信息增益与基尼指数的决策树算法[J]. 计算机工程与应用, 2022, 58(10): 139-144. |
[12] | 张田华, 罗康洋. 基于集成学习的上市公司高送转预测实证研究[J]. 计算机工程与应用, 2022, 58(10): 255-262. |
[13] | 孙永明, 杨进. 自适应插值与特征压缩的小样本数据分类研究[J]. 计算机工程与应用, 2022, 58(1): 106-112. |
[14] | 冉蓉,徐兴华,邱少华,崔小鹏,欧阳斌. 基于深度卷积神经网络的裂纹检测方法综述[J]. 计算机工程与应用, 2021, 57(9): 23-35. |
[15] | 韦佶宏,郑荣锋,刘嘉勇. 基于混合神经网络的恶意TLS流量识别研究[J]. 计算机工程与应用, 2021, 57(7): 107-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||