计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (5): 50-65.DOI: 10.3778/j.issn.1002-8331.2109-0393
赵珍珍,董彦如,曹慧,曹斌
出版日期:
2022-03-01
发布日期:
2022-03-01
ZHAO Zhenzhen, DONG Yanru, CAO Hui, CAO Bin
Online:
2022-03-01
Published:
2022-03-01
摘要: 近些年,老年人的健康问题越来越受到重视,跌倒作为影响老年人健康安全问题的主要原因之一,其研究热度一直居高不下,高质量的跌倒检测算法层出不穷。总结了跌倒检测的研究意义和现有的热门研究方法,分别从单一算法和混合算法的角度概述基于阈值、机器学习与深度学习三个方面的跌倒检测算法,介绍各算法的检测方式、判定方式、总体性能和各类单一算法的优缺点,并且从时间、空间和时空三重维度重点阐述了卷积神经网络在跌倒领域发挥的显著作用及应用;同时介绍了跌倒检测算法所使用的数据集及其特点,便于研究者了解跌倒检测在阈值、机器学习与深度学习方面的最新研究进展。最后,对跌倒检测算法所面临的挑战及未来发展进行了展望。
赵珍珍, 董彦如, 曹慧, 曹斌. 老年人跌倒检测算法的研究现状[J]. 计算机工程与应用, 2022, 58(5): 50-65.
ZHAO Zhenzhen, DONG Yanru, CAO Hui, CAO Bin. Research Status of Elderly Fall Detection Algorithms[J]. Computer Engineering and Applications, 2022, 58(5): 50-65.
[1] United Nations Department of Economic and Social Affairs,Population Division.World population ageing 2020 highlights:living arrangements of older persons(ST/ESA/SER.A/451)[R/OL].(2021-07-24)[2021-11-04].www.un.org/development/desa/pd/. [2] GE Y F,WANG L J,FENG W M,et al.The challenge and strategy selection of healthy aging in China[J].Journal of Management World,2020,36:86-95. [3] BRUNJES D L,KENNEL P J,SCHULZE P C.Exercise capacity,physical activity,and morbidity[J].Heart Failure Reviews,2017,22(2):133-139. [4] DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]//Proc of the Computer Vision and Pattern Recognition,2005:886-893. [5] RUBLEE E,RABAUD V,KONOLIGE K,et al.ORB:an efficient alternative to SIFT or SURF[C]//IEEE International Conference on Computer Vision,Barcelona,Spain,November 6-13,2011. [6] WANG X,HAN T X,YAN S.An HOG-LBP human detector with partial occlusion handling[C]//IEEE International Conference on Computer Vision,Kyoto,Japan,2009:32-39. [7] MUBASHIR M,SHAO L,SEED L.A survey on fall detection:principles and approaches[J].Neurocomputing,2013,100:144-152. [8] BET P,CASTRO P C,PONTI M A.Fall detection and fall risk assessment in older person using wearable sensors:a systematic review[J].International Journal of Medical Informatics,2019,130:103946. [9] ZHANG Z,CONLY C,ATHITSOS V.A survey on vision-based fall detection[C]//the 8th ACM International Conference,New York,NY,USA,2015:1-7. [10] CAI Z,HAN J,LIU L,et al.RGB-D datasets using microsoft kinect or similar sensors:a survey[J].Multimedia Tools & Applications,2017,76(3):4313-4355. [11] GUTIéRREZ J,RODRíGUEZ V,MARTIN S.Comprehensive review of vision-based fall detection systems[J].Sensors,2021,21(3):947. [12] LUQUE R.Comparison and characterization of android-based fall detection systems[J].Sensors,2014,14(10):18543-18574. [13] LIMA W S.Human activity recognition using inertial sensors in a smartphone:an overview[J].Sensors,2019,19(14):3213. [14] GONZáLEZ-CAETE F J, CASILARI E.A feasibility study of the use of smartwatches in wearable fall detection systems[J].Sensors,2021,21(6):2254. [15] PERRY J,KELLOG S,VAIDYA S,et al.Survey and evaluation of real-time fall detection approaches[C]//Proceeding of the 2009 6th International Symposium on High-capacity Optical Networks and Enabling Technolo-gies(HONET),2009:158-164. [16] DELAHOZ Y,LABRADOR M.Survey on fall detection and fall prevention using wearable and external sensors[J].Sensors,2014,14(10):19806. [17] RAMACHANDRAN A,KARUPPIAH A.Survey on recent advances in wearable fall detection systems[J].BioMed Research International,2020:1-17. [18] USMANI S.Latest research trends in fall detection and prevention using machine learning:a systematic review[J].Sensors,2021,21(15):5134. [19] ISLAM M M,TAYAN O,ISLAM M R,et al.Deep learning based systems developed for fall detection:a review[J].IEEE Access,2020,8:166117-166137. [20] 周燕,刘紫琴,曾凡智,等.深度学习的二维人体姿态估计综述[J].计算机科学与探索,2021,15(4):641-657. ZHOU Y,LIU Z Q,ZENG F Z,et al,Survey on two-dimensional human pose estimation of deep learning[J].Journal of Frontiers of Computer Science and Technology,2021,15(4):641-657. [21] WANG X,ELLUL J,AZZOPARDI G.Elderly fall detection systems:a literature survey[J].Frontiers in Robotics and AI,2020,7:71. [22] SUN J,WANG Z,PEI B,et al.Fall detection using plantar inclinometer sensor[C]//Ubiquitous Intelligence & Computing & IEEE Intl Conf on Autonomic & Trusted Computing & IEEE Intl Conf on Scalable Computing & Communications & Its Associated Workshops,Beijing,China,2016:1692-1697. [23] NASIYA P M.A wearable device for fall detection elderly people using tri dimensional accelerometer[C]//International Seminar on Intelligent Technology & Its Applications,Lombok,Indonesia,2017:671-674. [24] WENG W X,LO S C.Fall detection based on tilt angle and acceleration variations[C]//Trustcom/BigDatasE/ISPA,Tianjin,China,2017:1712-1717. [25] YUAN L,NAN W,LV C,et al.Human body fall detection based on the Kinect sensor[C]//2015 8th International Congress on Image and Signal Processing(CISP),Shenyang,China,2015:367-371. [26] 马宗方,李静,曹陇鑫.基于Kinect传感器的跌倒行为的检测与分析[J].激光与光电子学进展,2020,57(21):88-92. MA Z F,LI J,CAO L X.Fall behavior detection and analysis using a Kinect sensor[J].Laser & Optoelectronics Progress,2020,57(21):88-92. [27] WANG C,NARAYANAN M R,LORD S R,et al.A low-power fall detection algorithm based on triaxial acceleration and barometric pressure[J].IEEE Eng Med Biol Soc,2014:570-573. [28] HU Y,ZHANG F,WU C,et al.A WiFi-based passive fall detection system[C]//2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),Barcelona,Spain,2020:1723-1727. [29] OZDEMIR A,BARSHAN B.Detecting falls with wearable sensors using machine learning techniques[J].Sensors,2014,14(6):10691. [30] MROZEK D,KOCZUR A,MAYSIAK-MROZEK B.Fall detection in older adults with mobile IoT devices and machine learning in the cloud and on the edge[J].Information Sciences,2020,537(5):132-147. [31] DHOLE S R,KASHYAP A,DANGWAL A N,et al.A novel helmet design and implementation for drowsiness and fall detection of workers on-site using EEG and random-forest classifier[J].Procedia Comput Sci,2019,151:947-952. [32] RAMIREZ H,VELASTIN S,FABREGAS E,et al.Fall detection using human skeleton features[C]//11th International Conference on Pattern Recognition Systems(ICPRS’21),2021:33532-33542. [33] THAKUR N,HAN C Y.A study of fall detection in assisted living:identifying and improving the optimal machine learning method[J].Journal of Sensor and Actuator Networks,2021,10(3):39. [34] LEU F Y,KO C Y,LIN Y C,et al.Fall detection and motion classification by using decision tree on mobile phone-ScienceDirect[J].Smart Sensors Networks,2017:205-237. [35] HARRIS A,TRUE H,HU Z,et al.Fall recognition using wearable technologies and machine learning algorithms[C]//2016 IEEE International Conference on Big Data(Big Data),Washington,DC,USA,2016:3974-3976. [36] NGUYEN L P,SALEH M,JEANNèS R L B.An efficient design of a machine learning-based elderly fall detector[C]//International Conference on IoT Technologies for Healthcare.Cham:Springer,2017:34-41. [37] BOURKE A K,KLENK J,SCHWICKERT L,et al.Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population:a machine learning approach[C]//Engineering in Medicine & Biology Society,Orlando,FL,USA,2016:3712-3715. [38] KUMAR V,BADAL N,MISHRA R.Elderly fall due to drowsiness:detection and prevention using machine learning and IOT[J].Modern Physics Letters B,2021,35(7):2150120. [39] PALMERINI L,KLENK J,BECKER C,et al.Accelerometer-based fall detection using machine learning:training and testing on real-world falls[J].Sensors,2020,20(22):6479. [40] KIM T H,CHOI A,HEO H M,et al.Machine learning-based pre-impact fall detection model to discriminate various types of fall[J].Journal of Biomechanical Engineering,2019,141(8):081010. [41] DIRACO G,LEONE A,SICILIANO P.Radar sensing technology for fall detection under near real-life conditions[C]//IET International Conference on Technologies for Active & Assisted Living,London,UK,2016:1-6. [42] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc of the Computer Vision and Pattern Recognition,Columbus,OH,2014:580-587. [43] YU M,GONG L,KOLLIAS S.Computer vision based fall detection by a convolutional neural network[C]//the 19th ACM International Conference,New York,NY,2017:416-420. [44] CAMEIRO S A,DA SILVA G P,LEITE G V,et al.Multi-stream deep convolutional network using high-level features applied to fall detection in video sequences[C]//2019 International Conference on Systems,Signals and Image Processing(IWSSIP),Osijek,Croatia,2019:293-298. [45] YHDEGO H,AUDETTE M,LI J.Towards musculoskeletal simulation-aware fall injury mitigation:transfer learning with deep CNN for fall detection[C]//2019 Spring Simulation Conference,2019:1-12. [46] ABDULAZIZ A,ALWADAIN A.Killer heuristic optimized convolution neural network-based fall detection with wearable IoT sensor devices[J].Measurement,2021,167:108258. [47] LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2017:936-944. [48] SINGH B,DAVIS L S.An analysis of scale invariance in object detection-SNIP[C]//Proceedings of IEEE Confer-ence on Computer Vision and Pattern Recognition,2018:3578-3587. [49] DAI J,QI H,XIONG Y,et al.Deformable convolutional networks[C]//International Conference on Computer Vision,Venice,2017:764-773. [50] ZHANG Q,ZHU S.Real-time activity and fall risk detection for aging population using deep learning[C]//2018 9th IEEE Annual Ubiquitous Computing,Electronics & Mobile Communication Conference(UEMCON),2018:1055-1059. [51] SADREAZAMI H,BOLIC M,RAJAN S.Fall detection using standoff radar-based sensing and deep convolutional neural network[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2020,67(1):197-201. [52] XIA Y,ZHANG J,YE Q,et al.Evaluation of deep convolutional neural networks for detection of freezing of gait in Parkinson’s disease patients-ScienceDirect[J].Biomedical Signal Processing and Control,2018,46:221-230. [53] WANG S,CHEN L,ZHOU Z,et al.Human fall detection in surveillance video based on PCANet[J].Multimedia Tools and Applications,2016,75(19):11603-11613. [54] Nú?EZ-MARCOS A,AZKUNE G,ARGANDA-CARRERAS I.Vision-based fall detection with convolutional neural networks[J].Wireless Communications and Mobile Computing,2017,2017:1-16. [55] HNOOHOM N,JITPATT ANAKUL A,INLUERGSRI P,et al.Multi-sensor-based fall detection and activity daily living classification by using ensemble learning[C]//Proc Int ECTI Northern Sect Conf Electr Electron Comput Telecommun Eng(ECTI-NCON),2018:111-115. [56] CHHETRI S,ALSADOON A,IN T,et al.Deep learning for vision-based fall detection system:enhanced optical dynamic flow[J].Computational Intelligence,2021,37:578-595. [57] KAMBLE K P,SONTAKKE S S,DONADKAR H,et al.Fall alert:a novel approach to detect fall using base as a YOLO object detection[C]//International Conference on Advanced Machine Learning Technologies and Applications.Singapore:Springer,2021:15-24. [58] SOOMRO K,ZAMIR A R,SHAH M.UCF101:a dataset of 101 human actions classes from videos in the wild[J].arXiv:1212.0402,2012. [59] THEODORIDIS T,SOLACHIDIS V,VRETOS N,et al.Human fall detection from acceleration measurements using a recurrent neural network[C]//ICBHI 2017:Precision Medicine Powered by pHealth and Connected Health.Berlin,Germany:Springer,2018:145-149. [60] HWANG S,AHN D H,PARK H,et al.Maximizing accuracy of fall detection and alert systems based on 3D convolutional neural network:poster abstract[C]//2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation(IoTDI),Pittsburgh,PA,USA,2017:343-344. [61] YOON H J,RA H K,PARK T,et al.FADES:behavioral detection of falls using body shapes from 3D joint data[J].Journal of Ambient Intelligence and Smart Environments,2015,7(6):861-877. [62] LI S,XIONG H,DIAO X.Pre-impact fall detection using 3D convolutional neural network[C]//2019 IEEE 16th International Conference on Rehabilitation Robotics(ICORR),Toronto,ON,Canada,2019:1173-1178. [63] KASTURI S,FILONENKO A,JO H.Human fall recognition using the spatiotemporal 3D CNN[C]//IW-FCV2018,2019. [64] KIM D E,JEON B K,KWON D S.3D convolutional neural networks based fall detection with thermal camera[J].The Journal of Korea Robotics Society,2018,13(1):45-54. [65] FEICHTENHOFER C,PINZ A,ZISSERMAN A.Convolutional two-stream network fusion for video action recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,NV,USA,2016:1933-1941. [66] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556v6,2014. [67] 袁智,胡辉.一种基于双流卷积神经网络跌倒识别方法[J].河南师范大学学报(自然科学版),2017,45(3):96-101. YUAN Z,HU H.A fall detection method based on two-stream convolutional neural network[J].Journal of Henan Normal University(Natural Science Edition),2017,45(3):96-101. [68] KHRAIEF C,BENZARTI F,AMIRI H.Elderly fall detection based on multi-stream deep convolutional networks[J].Multimedia Tools and Applications,2020,79(6):19537-19560. [69] ROUGIER C,MEUNIER J,ST-ARNAUD A,et al.Fall detection from human shape and motion history using video surveillance[C]//21st International Conference on Advanced Information Networking and Applications Workshops(AINAW’07),Niagara Falls,ON,Canada,2007:875-880. [70] MAULDIN T,CANBY M,METSIS V,et al.SmartFall:a smartwatch-based fall detection system using deep learning[J].Sensors,2018,18(10):3363. [71] ZHAO R,YAN R,CHEN Z,et al.Deep learning and its applications to machine health monitoring[J].Mechanical Systems and Signal Processing,2019,115:213-237. [72] GE C J,GU I Y H,YANG J,et al.Co-saliency-enhanced deep recurrent convolutional networks for human fall detection in E-Healthcare[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2018:213-237. [73] TARAMASCO C,RODENAS T,MARTINEZ F,et al.A novel monitoring system for fall detection in older people[J].IEEE Access,2018:43563-43574. [74] LEE D W,JUN K,NAHEEM K,et al.Deep neural network based double-check method for fall detection using IMU-L sensor and RGB camera data[J].IEEE Access,2021:48064-48079. [75] DING J,WANG Y.A WiFi-based smart home fall detection system using recurrent neural network[J].IEEE Transactions on Consumer Electronics,2020,66(4):308-317. [76] SUN Y,HANG R,LI Z,et al.Privacy-preserving fall detection with deep learning on mmWave radar signal[C]//2019 IEEE Visual Communications and Image Processing(VCIP),2019:1-4. [77] WISESA I,MAHARDIKA G.Fall detection algorithm based on accelerometer and gyroscope sensor data using recurrent neural networks[J].IOP Conference Series:Earth and Environmental Science,2019,258(1):012035. [78] 郑毅,李凤,张丽,等.基于长短时记忆网络的人体姿态检测方法[J].计算机应用,2018,38(6):1568-1574. ZHENG Y,LI F,ZHANG L,et al.Human posture detection method based on long short term memory network[J].Journal of Computer Applications,2018,38(6):1568-1574. [79] KLENK J,SCHWICKERT L.The FARSEEING real-world fall repository:a large-scale collaborative database to collect and share sensor signals from real-world falls[J].European Review of Aging & Physical Activity,2016,13(1):8. [80] CHENG Z,QIN L.Human daily action analysis with multi-view and color-depth data[C]//European Conference on Computer Vision,2012:52-61. [81] CASILARI E,SANTOYO-RAMóN J A,CANO-GARCíA J M.UMAFall:a multisensor dataset for the research on automatic fall detection[J].Procedia Comput Sci,2017,110:32-39. [82] CHARTE D,CHARTE F,GARCíA,et al.A practical tutorial on autoencoders for nonlinear feature fusion:taxonomy,models,software and guidelines[J].Information Fusion,2017,44:78-96. [83] JOKANOVIC B,AMIN M,AHMAD F.Radar fall motion detection using deep learning[C]//2016 IEEE Radar Conference(RadarConf16),Philadelphia,PA,USA,2016:1-6. [84] DROGHINI D,FERRETTI D,PRINCIPI E,et al.An end-to-end unsupervised approach employing convolutional neural network autoencoders for human fall detection[C]//Italian Workshop on Neural Nets,2017:185-196. [85] ZHOU J,KOMURO T.Recognizing fall actions from videos using reconstruction error of variational autoencoder[C]//2019 IEEE International Conference on Image Processing(ICIP),Taipei,Taiwan,China,2019:3372-3376. [86] CAI X,LI S,LIU X,et al.Vision-based fall detection with multi-task Hourglass convolutional auto-encoder[J].IEEE Access,2020,8:44493-44502. [87] 李文阳,马行,穆春阳.基于Kinect V2的跌倒行为检测与分析[J].现代电子技术,2019,42(6):142-145. LI W Y,MA H,MU C Y.Detection and analysis on fall behavior based on Kinect V2[J].Modern Electronics Technique,2019,42(6):142-145. [88] 李京慧,迟宗涛,李钟晓.基于阈值分析法的人体跌倒检测系统[J].传感器与微系统,2019,38(8):80-82. LI J H,CHI Z T,LI Z X.Human fall detection system based on threshold analysis method[J].Transducer and Microsystem Technologies,2019,38(8):80-82. [89] WANG F T,CHAN H L,MING-HUNG H,et al.Threshold-based fall detection using a hybrid of tri-axial accelerometer and gyroscope[J].Physiological Measurement,2018,39(10):105002. [90] SHAHZAD A,KIM K.FallDroid:an automated smart-phone-based fall detection system using multiple kernel learning[J].IEEE Transactions on Industrial Informatics,2018,15(1):35-44. [91] TSINGANOS P,SKODRAS A.A smartphone-based fall detection system for the elderly[C]//International Symposium on Image & Signal Processing & Analysis,Ljubljana,Slovenia,2017:53-58. [92] NING Y,ZHANG S,NIE X,et al.Fall detection algorithm based on gradient boosting decision tree[C]//2019 IEEE International Conference on Signal Processing,Communications and Computing(ICSPCC),Piscataway,NJ,USA,2019. [93] PURUSHOTHAMAN A,VINEETHA K V,KURUP D G.Fall detection system using artificial neural network[C]//International Conference on Inventive Communication and Computational Technologies,Coimbatore,India,April 2018:1146-1149. [94] LOTFI A,ALBAWENDI S,POWELL H,et al.Supporting independent living for older adults;employing a visual based fall detection through analysing the motion and shape of the human Body[J].IEEE Access,2018,6:70272-70282. [95] THUC H L U,TUAN P V,HWANG J N.An effective video-based model for fall monitoring of the elderly[C]//International Conference on System Science and Engineering(ICSSE),Ho Chi Minh City,Vietnam,21-23 July,2017:48-52. [96] WU Y,XIAO Y,GE H.Fall detection monitoring system based on MEMS sensor[J].Journal of Physics:Conference Series,2020,1650(2):022037. [97] ALO U R,NWEKE H F,YING W T,et al.Smartphone motion sensor-based complex human activity identification using deep stacked autoencoder algorithm for enhanced smart healthcare system[J].Sensors,2020,20(21):6300. [98] LEE C M,PARK J,PARK S,et al.Fall-detection algorithm using plantar pressure and acceleration data[J]. International Journal of Precision Engineering and Manufacturing,2020,20(1):725-737. [99] HAI H X,THUC H L U.Cyclic HMM-based method for pathological gait recognition from side view gait video[J].Int J Adv Res Comput Eng Technol,2015,4(5):2171-2176. [100] PHAM V T.Development of a smart heaIthcare monitoring system based on video analysis[DB/OL].[2021-11-04].https://github.com/HBU/DataBase. [101] CHARFI I,MITERAN J,DUBOIS J,et al.Definition and performance evaluation of a robust SVM based fall detection solution[C]//Eighth International Conference on Signal Image Technology & Internet Based Systems,2012:218-224. [102] KONG X,MENG Z,MENG L,et al.A privacy protected fall detection IoT system for elderly persons using depth camera[C]//2018 International Conference on Advanced Mechatronic Systems(ICAMechS),Zhengzhou,China,2018:31-35. [103] 蔡文郁,郑雪晨,郭嘉豪,等.基于SVM-MultiCNN模型的视觉感知跌倒检测算法[J].杭州电子科技大学学报(自然科学版),2020,40(5):59-66. CAI W Y,ZHENG X C,GUO J H,et al.Visual perception fall detection algorithm based on SVM-Multi CNN model[J].Journal of Hangzhou Dianzi University(Natural Sciences),2020,40(5):59-66. [104] 刘峰,徐壮,干宗良,等.一种基于时序运动特征的RGB-D视频跌倒行为检测算法[J].南京邮电大学学报(自然科学版),2020,40(5):117-124. LIU F,XU Z,GAN Z L,et al.Fall detection algorithm based on temporal motion features in RGB-D videos[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition),2020,40(5):117-124. [105] 赵心驰,胡岸明,何为.基于卷积神经网络和XGBoost的摔倒检测[J].激光与光电子学进展,2020,57(16):248-256. ZHAO X C,HU A M,HE W.Fall detection based on convolutional neural network and XGBoost[J].Laser & Optoelectronics Progress,2020,57(16):248-256. [106] BOCHKOVSKIY A,WANG C Y,LIAO H.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [107] LIE W N,LE A T,LIN G H.Human fall-down event detection based on 2D skeletons and deep learning approach[C]//2018 International Workshop on Advanced Image Technology(IWAIT),Chiang Mai,Thailand,2018:1-4. [108] TAO X,YUN Z.Fall prediction based on biomechanics equilibrium using Kinect[J].International Journal of Distributed Sensor Networks,2017,13(4):155014771770325. [109] TSAI T H,HSU C W.Implementation of fall detection system based on 3D skeleton for deep learning technique[C]//2019 IEEE 8th Global Conference on Consumer Electronics(GCCE),2019:153049-153059. [110] 曹建荣,吕俊杰,武欣莹,等.融合运动特征和深度学习的跌倒检测算法[J].计算机应用,2021,41(2):583-589. CAO J R,LYU J J,WU X Y,et al.Fall detection algorithm integrating motion features and deep learning[J].Journal of Computer Applications,2021,41(2):583-589. [111] LU N,WU Y,FENG L,et al.Deep learning for fall detection:three-dimensional CNN combined with LSTM on video kinematic data[J].IEEE Journal of Biomedical and Health Informatics,2019,23(1):314-323. [112] HSIEH Y Z,JENG Y L.Development of home intelligent fall detection IoT system based on feedback optical flow convolutional neural network[J].IEEE Access,2017,6:6048-6057. [113] 苏江毅,宋晓宁,吴小俊,等.多模态轻量级图卷积人体骨架行为识别方法[J].计算机科学与探索,2021,15(4):733-742. SU J Y,SONG X N,WU X J,et al.Skeleton based action recognition algorithm on multi-modal lightweight graph convolutional network[J].Journal of Frontiers of Computer Science and Technology,2021,15(4):733-742. |
[1] | 郭明霄, 王宏伟, 王佳, 李昊哲, 杨仕旗. 基于动量分数阶梯度的卷积神经网络优化方法[J]. 计算机工程与应用, 2022, 58(6): 80-87. |
[2] | 郭子博, 高瑛珂, 胡航天, 弓铎, 刘凯, 吴宪云. 基于混合架构的卷积神经网络算法加速研究[J]. 计算机工程与应用, 2022, 58(6): 88-94. |
[3] | 汪玉, 王鑫, 张淑娟, 郑国强, 赵龙, 郑高峰. 异构大数据环境中高效率知识融合方法的研究[J]. 计算机工程与应用, 2022, 58(6): 142-148. |
[4] | 卢冰洁, 李炜卓, 那崇宁, 牛作尧, 陈奎. 机器学习模型在车险欺诈检测的研究进展[J]. 计算机工程与应用, 2022, 58(5): 34-49. |
[5] | 马利, 刘新宇, 李皓宇, 段苛苛, 牛斌. 应用空洞卷积的神经网络轻量化方法#br#[J]. 计算机工程与应用, 2022, 58(5): 85-93. |
[6] | 刘佳, 卞方舟, 陈大鹏, 李为斌. 基于UGF-Net的指尖检测模型[J]. 计算机工程与应用, 2022, 58(5): 225-231. |
[7] | 曹超凡, 罗泽南, 谢佳鑫, 李路. MDT-CNN-LSTM模型的股价预测研究[J]. 计算机工程与应用, 2022, 58(5): 280-286. |
[8] | 郭迎春, 张萌, 郝小可. 内容感知的图像重定向方法综述[J]. 计算机工程与应用, 2022, 58(4): 22-39. |
[9] | 何珊, 袁家斌, 陆要要. 基于中文发音视觉特点的唇语识别方法研究[J]. 计算机工程与应用, 2022, 58(4): 157-162. |
[10] | 潘慧, 段先华, 罗斌强. 多尺度特征DCA融合的海上船舶检测算法研究[J]. 计算机工程与应用, 2022, 58(4): 177-185. |
[11] | 王兰馨, 王卫亚, 程鑫. 结合Bi-LSTM-CNN的语音文本双模态情感识别模型[J]. 计算机工程与应用, 2022, 58(4): 192-197. |
[12] | 黄彦乾, 迟冬祥, 徐玲玲. 面向小样本学习的嵌入学习方法研究综述[J]. 计算机工程与应用, 2022, 58(3): 34-49. |
[13] | 吴迪, 姜丽婷, 王路路, 吐尔根·依布拉音, 艾山·吾买尔, 早克热·卡德尔. 结合多头注意力机制的旅游问句分类研究[J]. 计算机工程与应用, 2022, 58(3): 165-171. |
[14] | 杨兴锐, 赵寿为, 张如学, 杨兴俊, 陶叶辉. 结合自注意力和残差的BiLSTM_CNN文本分类模型[J]. 计算机工程与应用, 2022, 58(3): 172-180. |
[15] | 余昇, 王康健, 何灵敏, 胥智杰, 王修晖. 基于改进U-net网络的气胸分割方法[J]. 计算机工程与应用, 2022, 58(3): 207-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||