[1] 聂光涛, 黄华. 光学遥感图像目标检测算法综述[J]. 自动化学报, 2021, 47(8): 1749-1768.
NIE G T, HUANG H. A survey of object detection in optical remote sensing images[J]. Acta Automatica Sinica, 2021, 47(8): 1749-1768.
[2] 王燕, 吕艳萍. 混合深度CNN联合注意力的高光谱图像分类[J]. 计算机科学与探索, 2023, 17(2): 385-395.
WANG Y, LYU Y P. Hybrid deep CNN-attention for hyperspectral image classification[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 385-395.
[3] DONG H, YU B, WU W, et al. Enhanced lightweight end-to-end semantic segmentation for high-resolution remote sensing images[J]. IEEE Access, 2022, 10: 70947-70954.
[4] MA J, WU L, TANG X, et al. Building extraction of aerial images by a global and multi-scale encoder-decoder network[J]. Remote Sensing, 2020, 12(15): 2350.
[5] 叶应辉. 基于深度学习的卫星遥感图像边缘检测方法[J]. 计算机测量与控制, 2022, 30(10): 39-44.
YE Y H. Edge detection method for satellite remote sensing images based on deep learning[J]. Computer Measurement and Control, 2022, 30(10): 39-44.
[6] CHENG B, LI Z, XU B, et al. Target detection in remote sensing image based on object-and-scene context constrained CNN[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[7] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[8] HU J, SHEN L, ALBANIE S, et al. Gather-excite: exploiting feature context in convolutional neural networks[C]//Advances in Neural Information Processing Systems 31, 2018.
[9] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 3-19.
[10] HU H, GU J, ZHANG Z, et al. Relation networks for object detection[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3588-3597.
[11] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer, 2018: 3-11.
[12] 任鸿杰, 刘萍, 岱超, 等. 改进DeepLabV3+网络的遥感影像农作物分割方法[J]. 计算机工程与应用, 2022, 58(11): 215-223.
REN H J, LIU P, DAI C, et al. Crop segmentation method of remote sensing image based on improved DeepLabV3+ network[J]. Computer Engineering and Applications, 2022, 58(11): 215-223.
[13] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[14] PENG D, ZHANG Y, GUAN H. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11): 1382.
[15] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017.
[16] BEAL J, KIM E, TZENG E, et al. Toward transformer-based object detection[J]. arXiv:2012.09958, 2020.
[17] 岱超, 刘萍, 史俊才, 等. 利用U型网络的遥感影像建筑物规则化提取[J]. 计算机工程与应用, 2023, 59(8): 105-116.
DAI C, LIU P, SHI J C, et al. Regularized extraction of remotely sensed image buildings using U-shaped networks[J]. Computer Engineering and Applications, 2023, 59(8): 105-116.
[18] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[19] 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111.
JIA T H, PENG L, DAI F F. Object detector with residual learning and multi-scale feature enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1102-1111.
[20] 蔡肖, 陈志华, 盛斌. 基于移位窗口金字塔Transformer的遥感图像目标检测[J]. 计算机科学, 2023, 50(1): 105-113.
CAI X, CEHN Z H, SHENG B. ?SPT: swin pyramid transformer for object detection of remote sensing[J]. Computer Science, 2023, 50(1): 105-113.
[21] ZHENG S, LU J, ZHAO H, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 6881-6890.
[22] CHEN H, WANG Y, GUO T, et al. Pre-trained image processing transformer[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12299-12310.
[23] JIANG Y, CHANG S, WANG Z. TransGAN: two transformers can make one strong GAN[J]. arXiv:2102.07074, 2021.
[24] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[25] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[26] 刘剑峰, 潘晨. 增强特征金字塔结构的显著目标检测算法[J]. 计算机工程与应用, 2022, 58(12): 226-233.
LIU J F, PAN C. Salient object detection for enhanced feature pyramid structure[J]. Computer Engineering and Applications, 2022, 58(12): 226-233.
[27] ISLAM M A, KOWAL M, JIA S, et al. Position, padding and predictions: a deeper look at position information in CNNs[J]. arXiv:2101.12322, 2021.
[28] BA J L, KIROS J R, HINTON G E. Layer normalization[J]. arXiv:1607.06450, 2016.
[29] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning, 2015: 448-456.
[30] CAO H, WANG Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[J]. arXiv:2105.
05537, 2021.
[31] 季顺平, 魏世清. 遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报, 2019, 48(4): 448-459.
JI S P, WEI S Q. Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4): 448-459.
[32] WU G, SHAO X, GUO Z, et al. Automatic building segmentation of aerial imagery using multi-constraint fully convolutional networks[J]. Remote Sensing, 2018, 10(3): 407.
[33] 吕少云, 李佳田, 阿晓荟, 等. Res_ASPP_UNet++: 结合分离卷积与空洞金字塔的遥感影像建筑物提取网络[J]. 遥感学报, 2023, 27(2): 502-519.
LYU S Y, LI J T, A X H, et al. Res_ASPP_UNet++: building an extraction network from remote sensing imagery combining depthwise separable convolution with atrous spatial pyramid pooling[J]. National Remote Sensing Bulletin, 2023, 27(2): 502-519. |