[1] DAI Y, WANG S, XIONG N N, et al. A survey on knowledge graph embedding: approaches, applications and benchmarks[J]. Electronics, 2020, 9(5): 750.
[2] CAI B, XIANG Y, GAO L, et al. Temporal knowledge graph completion: a survey[J]. arXiv:2201.08236, 2022.
[3] 申宇铭, 杜剑峰. 时态知识图谱补全的方法及其进展[J]. 大数据, 2021, 7(3): 30-41.
SHEN Y M, DU J F. Methods and progress of temporal knowledge graph completion[J]. Big Data, 2021, 7(3): 30-41.
[4] WU J. Deep learning for temporal knowledge graph completion[D]. Montréal: McGill University, 2021.
[5] GRAVES A. Long short-term memory[M]//Supervised sequence labelling with recurrent neural networks. Berlin, Heidelberg: Springer, 2012: 37-45.
[6] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on Semantic Web, Heraklion, 2018: 593-607.
[7] BORDES A, USUNIER N, GATCIADURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems 26, 2013.
[8] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014.
[9] FAN M, ZHOU Q, CHANG E, et al. Transition-based knowledge graph embedding with relational mapping properties[C]//Proceedings of the 28th Pacific Asia Conference on Language, Information and Computing, 2014: 328-337.
[10] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning, 2011: 809-816.
[11] YANG B, YIH W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv:1412.6575, 2014.
[12] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, 2016: 2071-2080.
[13] SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Advances in Neural Information Processing Systems 26, 2013.
[14] DASGUPTA S S, RAY S N, TALUKDAR P P. HyTE: hyperplane-based temporally aware knowledge graph embedding[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018: 2001-2011.
[15] HU Z, GUTIERREZ-BASULTO V, XIANG Z, et al. Type-aware embeddings for multi-hop reasoning over knowledge graphs[J]. arXiv:2205.00782, 2022.
[16] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80.
[17] ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.
[18] XU C, NAYYERI M, ALKHOURY F, et al. TeRo: a time-aware knowledge graph embedding via temporal rotation[J]. arXiv:2010.01029, 2020.
[19] JIN W, QU M, JIN X, et al. Recurrent event network: auto-
regressive structure inference over temporal knowledge graphs[J]. arXiv:1904.05530, 2019.
[20] LEBLAY J, CHEKOL M W. Deriving validity time in knowledge graph[C]//Companion Proceedings of the Web Conference 2018, 2018: 1771-1776.
[21] XU C, NAYYERI M, ALKHOURY F, et al. Temporal knowledge graph embedding model based on additive time series decomposition[J]. arXiv:1911.07893, 2019.
[22] BOSSELUT A, RASHKIN H, SAP M, et al. COMET: commonsense transformers for automatic knowledge graph construction[J]. arXiv:1906.05317, 2019.
[23] BAI L, MA X, ZHANG M, et al. TPmod: a tendency-guided prediction model for temporal knowledge graph completion[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(3): 1-17.
[24] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv:1412.3555, 2014.
[25] ZHU C, CHEN M, FAN C, et al. Learning from history: modeling temporal knowledge graphs with sequential copy-generation networks[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021: 4732-4740.
[26] XU Y, OU J, XU H, et al. Temporal knowledge graph reasoning with historical contrastive learning[C]//Proceedings of the 37th AAAI Conference on Artificial Intelligence, 2023: 4765-4773.
[27] SADEGHIAN A, ARMANDPOUR M, COLAS A, et al. ChronoR: rotation based temporal knowledge graph embedding[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021: 6471-6479.
[28] LEETARU K, SCHRODT P A. GDELT: global data on events, location, and tone, 1979—2012[C]//Annual Meeting of the International Studies Association, 2013.
[29] REBELE T, SUCHANEK F, HOFFART J, et al. YAGO: a multilingual knowledge base from Wikipedia, Wordnet, and Geonames[C]//Proceedings of the 15th International Semantic Web Conference, Kobe, 2016: 177-185.
[30] HAN Z, CHEN P, MA Y, et al. Explainable subgraph reasoning for forecasting on temporal knowledge graphs[C]//Proceedings of the 8th International Conference on Learning Representations, 2020. |