[1] 赵悦菡, 侯召华, 纪海鹏, 等. 樱桃生理变化及保鲜机理研究进展[J]. 食品研究与开发, 2021, 42(23): 197-203.
ZHAO Y H, HOU Z H, JI H P, et al. Advances in research on physiological changes and fresh-keeping mechanism of cherries[J]. Food Research and Development, 2021, 42(23): 197-203.
[2] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[4] KAMILARIS A, PRENAFETA-BOLDú F X. Deep learning in agriculture: a survey[J]. Computers and Electronics in Agriculture, 2018, 147: 70-90.
[5] GAI R L, CHEN N, YUAN H. A detection algorithm for cherry fruits based on the improved YOLO?v4 model[J]. Neural Computing and Applications, 2021, 35: 13895-13906.
[6] ZHENG T, JIANG M, LI Y, et al. Research on tomato detection in natural environment based on RC-YOLOv4[J]. Computers and Electronics in Agriculture, 2022, 198: 07029.
[7] 赵元龙, 单玉刚, 袁杰. 改进YOLOv7与DeepSORT的佩戴口罩行人跟踪[J]. 计算机工程与应用, 2023, 59(6): 221-230.
ZHAO Y L, SHAN Y G, YUAN J. Wearing mask pedestrian tracking based on improved YOLOv7 and DeepSORT[J]. Computer Engineering and Applications, 2023, 59(6): 221-230.
[8] 王文杰, 贡亮, 汪韬, 等. 基于多源图像融合的自然环境下番茄果实识别[J]. 农业机械学报, 2021, 52(9): 156-164.
WANG W J, GONG L, WANG T, et al. Tomato fruit recognition based on multi-source fusion image segmentation algorithm in open environment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 156-164.
[9] ZHOU Z M, WU Z J, WANG J, et al. Panchromatic and multi-spectral image fusion using IHS and variational models[C]//Proceedings of the 2012 5th International Congress on Image and Signal Processing (CISP 2012), Chongqing, China, 2012: 1077-1080.
[10] GHAHREMANI M, GHASSEMIAN H. Nonlinear IHS: a promising method for pan-sharpening[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1606-1610.
[11] 王欢. 基于小波变换的多传感器遥感图像融合算法研究[D]. 湘潭: 湘潭大学, 2009.
WANG H. Research on multi-sensor remote sensing image fusion based on wavelet transform[D]. Xiangtan: Xiangtan University, 2009.
[12] 李章维, 胡安顺, 王晓飞. 基于视觉的目标检测方法综述[J]. 计算机工程与应用, 2020, 56(8): 1-9.
LI Z W, HU A S, WANG X F. Survey of vision based object detection methods[J]. Computer Engineering and Applications, 2020, 56(8): 1-9.
[13] YAN B, FAN P, LEI X, et al. A real-time apple targets detection method for picking robot based on improved YOLOv5[J]. Remote Sensing, 2021, 13(9): 1619.
[14] WU D, JIANG S, ZHAO E, et al. Detection of camellia oleifera fruit in complex scenes by using YOLOv7 and data augmentation[J]. Applied Sciences, 2022, 12(22): 11318.
[15] XIA Y, NGUYEN M, YAN W Q. A real-time kiwifruit detection based on improved YOLOv7[C]//Proceedings of the 37th International Conference on Image and Vision Computing (IVCNZ 2022), Auckland, New Zealand, November 24-25, 2022. Cham: Springer Nature Switzerland, 2023: 48-61.
[16] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV 2018), Munich, Germany, September 8-14, 2018: 3-19.
[17] 邓宁. 基于深度学习的注意力机制的算法改进研究[D]. 重庆: 西南大学, 2022.
DENG N. Research on algorithm improvement of attention mechanism based on deep learning[D]. Chongqing: Southwest University, 2022.
[18] LI Z, JIANG X, SHUAI L, et al. A real-time detection algorithm for sweet cherry fruit maturity based on YOLOX in the natural environment[J]. Agronomy, 2022, 12(10): 2482.
[19] 赵辉, 乔艳军, 王红君, 等. 基于改进YOLOv3的果园复杂环境下苹果果实识别[J]. 农业工程学报, 2021, 37(16): 127-135.
ZHAO H, QIAO Y J, WANG H J, et al. Apple fruit recognition in complex orchard environment based on improved YOLOv3[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(16): 127-135.
[20] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS—improving object detection with one line of code[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 5561-5569.
[21] 于波, 冯伟. 改进SSD算法及其在口罩佩戴检测中的应用[J]. 计算机仿真, 2022, 39(5): 488-493.
YU B, FENG W. Improved SSD algorithm and its application in mask wear detection[J]. Computer Simulation, 2022, 39(5): 488-493.
[22] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[23] 黄斌. 基于深度学习的视频人物识别算法研究[D]. 北京: 北京邮电大学, 2021.
HUANG B. Research on video character recognition algorithm based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2021.
[24] 南晓虎, 丁雷. 深度学习的典型目标检测算法综述[J]. 计算机应用研究, 2020, 37(S2): 15-21.
NAN X H, DING L. Review of typical target detection algorithms for deep learning[J]. Application Research of Computers, 2020, 37(S2): 15-21.
[25] REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2311-2314.
[26] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[27] CHEN Z Y, WU R H, LIN Y Y, et al. Plant disease recognition model based on improved YOLOv5[J]. Agronomy, 2022, 2(2): 365.
[28] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[29] 宋怀波, 尚钰莹, 何东健. 果实目标深度学习识别技术研究进展[J]. 农业机械学报, 2023, 54(1): 1-19.
SONG H B, SHANG Y Y, HE D J. Review on deep learning technology for fruit target recognition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(1): 1-19. |