[1] MEDINA-SALGADO B, SáNCHEZ-DELACRUZ E, POZOS-PARRA P, et al. Urban traffic flow prediction techniques: a review[J]. Sustainable Computing: Informatics and Systems, 2022, 35: 100739.
[2] KAFFASH S, NGUYEN A T, ZHU J. Big data algorithms and applications in intelligent transportation system: a review and bibliometric analysis[J]. International Journal of Production Economics, 2021, 231: 107868.
[3] 姚俊峰, 何瑞, 史童童, 等. 基于机器学习的交通流预测方法综述[J]. 交通运输工程学报, 2023, 23(3): 44-67.
YAO J F, HE R, SHI T T, et al. Review on machine learning-based traffic flow prediction methods[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 44-67.
[4] YUAN H, LI G. A survey of traffic prediction: from spatio-temporal data to intelligent transportation[J]. Data Science and Engineering, 2021, 6(1): 63-85.
[5] YANG H, LI X, QIANG W, et al. A network traffic forecasting method based on SA optimized ARIMA-BP neural network[J]. Computer Networks, 2021, 193: 108102.
[6] CAI L, ZHANG Z, YANG J, et al. A noise-immune Kalman filter for short-term traffic flow forecasting[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 536: 122601.
[7] SHEN Q Q, CAO Y, ZENG B, et al. Stable computation of least squares problems of the OGM(1,N) model and short-term traffic flow prediction[J]. East Asian Journal on Applied Mathematics, 2022, 12(2): 264-284.
[8] LIN G, LIN A, GU D. Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient[J]. Information Sciences, 2022, 608: 517-531.
[9] RASKAR C, NEMA S. Metaheuristic enabled modified hidden Markov model for traffic flow prediction[J]. Computer Networks, 2022, 206: 108780.
[10] YIN X, WU G, WEI J, et al. Deep learning on traffic prediction: methods, analysis, and future directions[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 4927-4943.
[11] TEDJOPURNOMO D A, BAO Z, ZHENG B, et al. A survey on modern deep neural network for traffic prediction: trends, methods and challenges[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(4): 1544-1561.
[12] 张壮壮, 屈立成, 李翔, 等. 基于时空卷积神经网络的数据缺失交通流预测[J]. 计算机工程与应用, 2022, 58(7): 259-265.
ZHANG Z Z, QU L C, LI X, et al. Traffic flow prediction with missing data based on spatial-temporal convolutional neural networks[J]. Computer Engineering and Applications, 2022, 58(7): 259-265.
[13] 吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(1): 35-68.
WU B, LIANG X, ZHANG S S, et al. Advances and applications in graph neural network[J]. Chinese Journal of Computers, 2022, 45(1): 35- 68.
[14] LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[C]//Proceedings of the International Conference on Learning Representations, Vancouver, 2018.
[15] ZHAO L, SONG Y, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858.
[16] 陈丹蕾, 陈红, 任安虎. 考虑时空影响下的图卷积网络短时交通流预测[J]. 计算机工程与应用, 2021, 57(13): 269-275.
CHEN D L, CHEN H, REN A H. Short-time traffic flow prediction of graph convolutional network considering influence of space and time[J]. Computer Engineering and Applications, 2021, 57(13): 269-275.
[17] GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence, Hawaii, 2019: 922-929.
[18] 陈喜群, 周凌霄, 曹震. 基于图卷积网络的路网短时交通流预测研究[J]. 交通运输系统工程与信息, 2020, 20(4): 49-55.
CHEN X Q, ZHOU L X, CAO Z. Short-term network-wide traffic prediction based on graph convolutional network[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4): 49-55.
[19] TREMBLAY N, GON?ALVES P, BORGNAT P. Design of graph filters and filterbanks[M]//Cooperative and graph signal processing.[S.l.]: Academic Press, 2018: 299-324.
[20] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and deep locally connected networks on graphs[C]// Proceedings of the International Conference on Learning Representations, Banff, 2014.
[21] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Processing Systems, 2016: 3844-3852.
[22] WELLING M, KIPF T N. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the International Conference on Learning Representations, Toulon, 2017.
[23] 戴俊明, 曹阳, 沈琴琴, 等. 基于多时空图卷积网络的交通流预测[J]. 计算机应用研究, 2022, 39(3): 780-784.
DAI J M, CAO Y, SHEN Q Q, et al. Traffic flow prediction based on multi-spatial-temporal graph convolutional network[J]. Application Research of Computers, 2022, 39(3): 780-784.
[24] XU B, SHEN H, CAO Q, et al. Graph convolutional networks using heat kernel for semi-supervised learning[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, 2019: 1928-1934.
[25] BIANCHI F M, GRATTAROLA D, LIVI L, et al. Graph neural networks with convolutional ARMA filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3496-3507.
[26] CHUNG F R K. Spectral graph theory[M]. [S.l.]:American Mathematical Society, 1997: 6-7. |