[1] STIRNEMANN J J, BESSON R, SPAGGIARI E, et al. Development and clinical validation of real-time artificial intelligence diagnostic companion for fetal ultrasound examination[J]. Ultrasound in Obstetrics & Gynecology, 2023, 62(3): 353-360.
[2] 徐光柱, 钱奕凡, 王阳, 等. 基于两级分割的胎儿四腔心超声切面质量评测[J]. 中国图象图形学报, 2023, 28(8): 2476-2490.
XU G Z, QIAN Y F, WANG Y,et al. Quality assessment for fetal four-chamber ultrasound views based on two-stage segmentation[J]. Journal of Image and Graphics, 2023, 28(8): 2476-2490.
[3] SHEN Y T, CHEN L, YUE W W, et al. Artificial intelligence in ultrasound[J]. European Journal of Radiology, 2021, 139: 109717.
[4] FIORENTINO M C, VILLANI F P, DI COSMO M, et al. A review on deep-learning algorithms for fetal ultrasound-image analysis[J]. Medical Image Analysis, 2023, 83: 102629.
[5] 王波, 袁凤强, 陈宗仁, 等. 多阶U-Net甲状腺超声图像自动分割方法[J]. 计算机工程与应用, 2023, 59(5): 205-212.
WANG B, YUAN F Q, CHEN Z R, et al. Multi-stage U-Net automatic segmentation of thyroid ultrasound images[J]. Computer Engineering and Applications, 2023, 59(5): 205-212.
[6] DINDOYAL I, LAMBROU T, DENG J, et al. Level set snake algorithms on the fetal heart[C]//Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007: 864-867.
[7] SIQUEIRA M L, GASPERIN C V, SCHARCANSKI J, et al. Echocardiographic image sequence segmentation using self-organizing maps[C]//Proceedings of the 2000 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing X, 2000: 594-603.
[8] DINDOYAL I, LAMBROU T, DENG J, et al. Level set segmentation of the fetal heart[C]//Proceedings of the International Workshop on Functional Imaging and Modeling of the Heart, 2005: 123-132.
[9] SIQUEIRA M L, NAVAUX P O A. Automatic heart localization in ultrasound fetal images[C]//Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 2007: 107-112.
[10] 王燕, 南佩奇. MFFNet: 多级特征融合图像语义分割网络[J]. 计算机科学与探索, 2024, 18(3): 707-717.
WANG Y, NAN P Q. MFFNet: image semantic segmentation network of multi-level feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 707-717.
[11] 龚勋, 杨菲, 杜章锦, 等. 甲状腺、乳腺超声影像自动分析技术综述[J]. 软件学报, 2020, 31(7): 2245-2282.
GONG X, YANG F, DU Z J, et al. Survey of automatic ultrasonographic analysis for thyroid and breast[J]. Journal of Software, 2020, 31(7): 2245-2282.
[12] 陈曦, 刘奇, 邓小波, 等. 改进U-Net的超声乳腺肿瘤分割网络[J]. 计算机工程与应用, 2022, 58(22): 219-228.
CHEN X, LIU Q, DENG X B, et al. Enhanced network for ultrasound breast tumor segmentation based on U-Net[J]. Computer Engineering and Applications, 2022, 58(22): 219-228.
[13] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of International on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
[14] 徐光宪, 冯春, 马飞. 基于UNet的医学图像分割综述[J]. 计算机科学与探索, 2023, 17(8): 1776-1792.
XU G X, FENG C, MA F. Review of medical image segmentation based on UNet[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792.
[15] WANG R, LEI T, CUI R, et al. Medical image segmentation using deep learning: a survey[J]. IET Image Processing, 2022, 16(5): 1243-1267.
[16] RACHMATULLAH M N, NURMAINI S, SAPITRI A I, et al. Convolutional neural network for semantic segmentation of fetal echocardiography based on four-chamber view[J]. Bulletin of Electrical Engineering and Informatics, 2021, 10(4): 1987-1996.
[17] XU L, LIU M, SHEN Z, et al. DW-Net: a cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography[J]. Computerized Medical Imaging and Graphics, 2020, 80: 101690.
[18] SENGAN S, MEHBODNIYA A, BHATIA S, et al. Echocardiographic image segmentation for diagnosing fetal cardiac rhabdomyoma during pregnancy using deep learning[J]. IEEE Access, 2022, 10: 114077-114091.
[19] ZENG Y, TSUI P H, PANG K, et al. MAEF-Net: multi-attention efficient feature fusion network for left ventricular segmentation and quantitative analysis in two-dimensional echocardiography[J]. Ultrasonics, 2023, 127: 106855.
[20] SFAKIANAKIS C, SIMANTIRIS G, TZIRITAS G. GUDU: geometrically-constrained ultrasound data augmentation in U-Net for echocardiography semantic segmentation[J]. Biomedical Signal Processing and Control, 2023, 82: 104557.
[21] ALAM M G R, KHAN A M, SHEJUTY M F, et al. Ejection fraction estimation using deep semantic segmentation neural network[J]. The Journal of Supercomputing, 2023, 79(1): 27-50.
[22] SANDLER M, HOWARD A, ZHU M, et al. MobileNetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[23] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision, 2018: 801-818.
[24] DOUGHERTY E R. Digital image processing methods[M]. [S.l.]: CRC Press, 2020.
[25] PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations[J]. Computer Vision, Graphics, and Image Processing, 1987, 39(3): 355-368.
[26] REZA A M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[J]. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 2004, 38: 35-44.
[27] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[28] WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of the Winter Conference on Applications of Computer Vision, 2018: 1451-1460.
[29] HOSSAIN M S, BETTS J M, PAPLINSKI A P. Dual focal loss to address class imbalance in semantic segmentation[J]. Neurocomputing, 2021, 462: 69-87.
[30] KHAN S H, HAYAT M, BENNAMOUN M, et al. Cost-sensitive learning of deep feature representations from imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(8): 3573-3587.
[31] EMARA T, ABD EL MUNIM H E, ABBAS H M. LiteSeg: a novel lightweight convnet for semantic segmentation[J]. arXiv:1912.06683, 2019.
[32] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018: 3-11.
[33] SHARIFZADEH M, BENALI H, RIVAZ H. Investigating shift variance of convolutional neural networks in ultrasound image segmentation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(5): 1703-1713.
[34] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[35] LOU A, LOEW M. CFPNet: channel-wise feature pyramid for real-time semantic segmentation[C]//Proceedings of the IEEE Conference International Conference on Image Processing, 2021: 1894-1898. |