[1] 周宁, 杨文杰, 刘久锐, 等. 基于受电弓状态感知的弓网安全监测系统研究与探讨[J]. 中国科学: 技术科学, 2021, 51(1): 23-34.
ZHOU N, YANG W J, LIU J R, et al. Investigation of a pantograph-catenary monitoring system using condition-based pantograph recognition[J]. Scientia Sinica (Technologica), 2021, 51(1): 23-34.
[2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[3] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. arXiv:1506.01497, 2015.
[4] HE K M, GKIOXARI G, DOLLAR P. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980-2988.
[5] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[6] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision (CCV 2016), Amsterdam, The Netherlands, October 11-14, 2016. Cham: Springer International Publishing, 2016: 21-37.
[8] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[9] LI D, ZHANG Z, WANG B, et al. Detection method of timber defects based on target detection algorithm[J]. Measurement, 2022, 203: 111937.
[10] 庹冰, 黄丽雯, 唐鑫, 等. 基于YOLOX-WSC的PCB缺陷检测算法研究[J]. 计算机工程与应用, 2023, 59(10): 236-243.
TUO B, HUANG L W, TANG X, et al. Research on PCB defect detection algorithm based on YOLOX-WSC[J]. Computer Engineering and Applications, 2023, 59(10): 236-243.
[11] WANG X, GAO J S, HOU B J, et al. A lightweight modified YOLOX network using coordinate attention mechanism for PCB surface defect detection[J]. IEEE Sensors Journal, 2022, 22(21): 20910-20920.
[12] 李亚东, 马行, 穆春阳, 等. 改进YOLOX网络的轴承缺陷小目标检测方法[J]. 计算机工程与应用, 2023, 59(1): 100-107.
LI Y D, MA X, MU C Y, et al. Improved small target detection method of bearing defects in YOLOX network[J]. Computer Engineering and Applications, 2023, 59(1): 100-107.
[13] GUO Q, LIU J, KALIUZHNYI M. YOLOX-SAR: high-precision object detection system based on visible and infrared sensors for SAR remote sensing[J]. IEEE Sensors Journal, 2022, 22(17): 17243-17253.
[14] YI C, XU B, CHEN J, et al. An improved YOLOX model for detecting strip surface defects[J]. Steel Research International, 2022, 93(11): 2200505.
[15] HU J, QIAO P, LV H, et al. High speed railway fastener defect detection by using improved YOLOX-Nano model[J]. Sensors, 2022, 22(21): 8399.
[16] WEI X, JIANG S, LI Y, et al. Defect detection of pantograph slide based on deep learning and image processing technology[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(3): 947-958.
[17] LU S, LIU Z, LI D, et al. Automatic wear measurement of pantograph slider based on multiview analysis[J]. IEEE Transactions on Industrial Informatics, 2020, 17(5): 3111-3121.
[18] LI H. Research on fault detection algorithm of pantograph based on edge computing image processing[J]. IEEE Access, 2020, 8: 84652-84659.
[19] KARADUMAN G, AKIN E. A deep learning based method for detecting of wear on the current collector Strips’ surfaces of the pantograph in railways[J]. IEEE Access, 2020, 8: 183799-183812.
[20] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017.
[21] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[22] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[23] LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[J]. arXiv:1911.09516, 2019.
[24] JIANG B, LUO R, MAO J, et al. Acquisition of localization confidence for accurate object detection[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 784-799.
[25] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
[26] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[27] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. arXiv: 2101.08158, 2021.
[28] WANG C Y BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the lEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[29] ZHOU X, WANG D, KR?HENBüHL P. Objects as points[J]. arXiv:1904.07850, 2019.
[30] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229. |