[1] 闫超, 涂良辉, 王聿豪, 等. 无人机在我国民用领域应用综述[J]. 飞行力学, 2022, 40(3): 1-6.
YAN C, TU L H, WANG L H, et al. Application of unmanned aerial vehicle in civil field in China[J]. Flight Mechanics, 2022, 40(3): 1-6.
[2] 孟琭, 杨旭. 目标跟踪算法综述[J]. 自动化学报, 2019, 45(7): 1244-1260.
MENG L, YANG X. A survey of object tracking algorithms[J]. Acta Automatica Sinica, 2019, 45(7): 1244-1260.
[3] 林淑彬, 吴贵山, 许甲云, 等. 多帧监督的相关滤波无人机目标跟踪[J]. 计算机工程与应用, 2021, 57(24): 152-160.
LIN S B, WU G S, XU J Y, et al. Multi-frame surveillance of correlation filter in UAV object tracking[J]. Computer Engineering and Applications, 2021, 57(24): 152-160.
[4] DANELLJAN M, HAGER G, KHAN F, et al. Accurate scale estimation for robust visual tracking[C]//British Machine Vision Conference, 2014.
[5] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3): 583-596.
[6] LI F, TIAN C, ZUO W, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, 2018: 4904-4913.
[7] LI X, MA C, WU B, et al. Target-aware deep tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, 2019: 1369-1378.
[8] WANG N, SONG Y, MA C, et al. Unsupervised deep tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 2019: 1308-1317.
[9] LI Y, FU C, DING F, et al. AutoTrack: towards high-performance visual tracking for UAV with automatic spatio-temporal regularization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 11923-11932.
[10] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 850-865.
[11] LI B, YAN J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8971-8980.
[12] WANG Q, ZHANG L, BERTINETTO L, et al. Fast online object tracking and segmentation: a unifying approach[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2019: 1328-1338.
[13] LI B, WU W, WANG Q, et al. SiamRPN++: evolution of Siamese visual tracking with very deep networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4282-4291.
[14] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2016: 770-778.
[15] XU Y, WANG Z, LI Z, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines[C]//Proceedings of the AAAI Conference on Artificial Intelligence, New York, 2020: 12549-12556.
[16] UASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017, 30: 1-15.
[17] CAO Z, FU C, YE J, et al. HiFT: hierarchical feature Transformer for aerial tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, 2021: 15457-15466.
[18] 江英杰, 宋晓宁. 基于视觉Transformer的双流目标跟踪算法[J]. 计算机工程与应用, 2022, 58(12): 183-190.
JIANG Y J, SONG X N. Dual-stream object tracking algorithm based on vision Transformer[J]. Computer Engineering and Applications, 2022, 58(12): 183-190.
[19] CAO Z, HUANG Z, PAN L, et al. TCTrack: temporal contexts for aerial tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern recognition. Washington DC: IEEE Computer Society, 2022: 14798-14808.
[20] WANG N, ZHOU W, WANG J, et al. Transformer meets tracker: Exploiting temporal context for robust visual tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2021: 1571-1580.
[21] YAN B, PENG H, FU J, et al. Learning spatio-temporal transformer for visual tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington DC: IEEE Computer Society, 2021: 10448-10457.
[22] CUI Y, JIANG C, WANG L, et al. MixFormer: end-to-end tracking with iterative mixed attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2022: 13608-13618.
[23] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. Washington DC: IEEE Computer Society, 2012: 1097-1105.
[24] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, New York, 2020: 12993-13000.
[25] DOSSVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[26] HUANG L, ZHAO X, HUANG K. GOT-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1562-1577.
[27] FAN H, LIN L, YANG F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2019: 5374-5383.
[28] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
[29] MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 445-461.
[30] MA C, YANG X, ZHANG C, et al. Long-term correlation tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2015: 5388-5396.
[31] DANELLJAN M, HAGER G, SHAHBAZ KHAN F, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington DC: IEEE Computer Society, 2015: 4310-4318.
[32] KIANI GALOOGAHI H, FAGG A, LUCEY S. Learning background aware correlation filters for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Venice, 2017: 1135-1143.
[33] DANELLJAN M, BHAT G, SHAHBAZ KHAN F, et al. ECO: efficient convolution operators for tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 6638-6646.
[34] ZHANG Z, PENG H. Deeper and wider siamese networks for real-time visual tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2019: 4591-4600.
[35] 杨帅东, 谌海云, 许瑾, 等. 利用深度卷积特征的无人机视觉跟踪[J]. 控制与决策, 2023, 38(9): 2496-2504.
YANG S D, SHEN H Y, XU J, et al. Visual tracking using deep convolutional feature[J]. Control and Decision, 2023, 38(9): 2496-2504. |