[1] GUO M H, CAI J X, LIU Z N, et al. PCT: point cloud transformer[J]. Computational Visual Media, 2021, 7(2): 187-199.
[2] ZHAO H S, JIANG L, JIA J Y, et al. Point transformer[C]//18th IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 16239-16248.
[3] ZHANG R, ZENG Z, GUO Z, et al. DSPoint: dual-scale point cloud recognition with high-frequency fusion[J]. arXiv:2111.10332, 2021.
[4] RAN H, LIU J, WANG C. Surface representation for point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 18942-18952.
[5] HU Q Y, YANG B, XIE L H, et al. RandLA-Net: efficient semantic segmentation of large-scale point clouds[C]//Proceedings 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 11105-11114.
[6] LIU K, GAO Z, LIN F, et al. FG-Net: a fast and accurate framework for large-scale lidar point cloud understanding[J] IEEE Transactions on Cybernetics, 2022, 53(1): 553-564.
[7] RAN H X, ZHUO W, LIU J, et al. Learning inner-group relations on point clouds[C]//18th IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 15457-15467.
[8] THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]//IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 6420-6429.
[9] GUO Y, WANG H, HU Q, et al. Deep learning for 3d point clouds: a survey[J] IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(12): 4338-4364.
[10] LI Y, BU R, SUN M, et al. PointCNN: convolution on Χ-transformed points[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 828-838.
[11] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//IEEE International Conference on Computer Vision, 2015: 945-953.
[12] ABOU ZEID K, SCHULT J, HERMANS A, et al. Point2Vec for self-supervised representation learning on point clouds[J]. arXiv:2303.16570, 2023.
[13] LE T, DUAN Y. PointGrid: a deep network for 3D shape understanding[C]//31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 9204-9214.
[14] TANG H, LIU Z, ZHAO S, et al. Searching efficient 3D architectures with sparse point-voxel convolution[C]//European Conference on Computer Vision, 2020: 685-702.
[15] HOU Y N, ZHU X G, MA Y X, et al. Point-to-voxel knowledge distillation for LiDAR semantic segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 8469-8478.
[16] QI C R, SU H, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 77-85.
[17] WANG W, YU R, HUANG Q, et al. SGPN: similarity group proposal network for 3D point cloud instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2569-2578.
[18] QI C R, YI L, SU H, et al. PointNet++ deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5105-5114.
[19] MA Y, GUO Y, LEI Y, et al. 3DMAX-Net: a multi-scale spatial contextual network for 3D point cloud semantic segmentation[C]//2018 24th International Conference on Pattern Recognition (ICPR), 2018: 1560-1566.
[20] WU W, QI Z, LI F X. PointConv: deep convolutional networks on 3D point clouds[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 9613-9622.
[21] XU M, DING R, ZHAO H, et al. PAConv: position adaptive convolution with dynamic kernel assembling on point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3173-3182.
[22] XIANG T G, ZHANG C Y, SONG Y, et al. Walk in the cloud: learning curves for point clouds shape analysis[C]//18th IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 895-904.
[23] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[24] LAI X, LIU J H, JIANG L, et al. Stratified Transformer for 3D point cloud segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 8490-8499.
[25] PARK J, LEE S, KIM S, et al. Self-positioning point-based Transformer for point cloud understanding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 21814-21823.
[26] ZHOU J, XIONG Y, CHIU C, et al. SAT: size-aware Transformer for 3D point cloud semantic segmentation[J]. arXiv:2301.06869, 2023.
[27] HUANG Z, ZHAO Z, LI B, et al. LCPFormer: towards effective 3D point cloud analysis via local context propagation in Transformers[J]. arXiv:2210.12755, 2022.
[28] PARK C, JEONG Y, CHO M S, et al. Fast point Transformer[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 16928-16937.
[29] QIAN G, LI Y, PENG H, et al. PointNeXt: revisiting PointNet++ with improved training and scaling strategies[J]. arXiv:2206.04670, 2022.
[30] FAN S, DONG Q, ZHU F, et al. SCF-Net: learning spatial contextual features for large-scale point cloud segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 14504-14513. |