[1] 卢健, 贾旭瑞, 周健, 等. 基于深度学习的三维点云分割综述[J]. 控制与决策, 2023, 38(3): 595-611.
LU J, JIA X R, ZHOU J, et al. A review of deep learning based on 3D point cloud segmentation[J]. Control and Decision, 2023, 38(3): 595-611.
[2] QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[3] QI C R, LI Y, HAO S, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017.
[4] WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics (TOG), 2019, 38(5): 1-12.
[5] ZHANG K, HAO M, WANG J, et al. Linked dynamic graph CNN: learning on point cloud via linking hierarchical features[J]. arXiv:1904.10014, 2019.
[6] SUN Q, LIU H, HE J, et al. DAGC: employing dual attention and graph convolution for point cloud based place recognition[C]//International Conference on Multimedia Retrieval, 2020.
[7] GUO M H, CAI J X, LIU Z N, et al. PCT: point cloud transformer[J]. Computational Visual Media, 2021, 7: 187-199.
[8] GAO J, LAN J, WANG B, et al. SDANet: spatial deep attention-based for point cloud classification and segmentation[J]. Machine Learning, 2022, 111(4): 1327-1348.
[9] LIU H, TIAN S. Deep 3D point cloud classification and segmentation network based on GateNet[J]. The Visual Computer, 2023, 40: 971-981.
[10] 苏鸣方, 胡立坤, 黄润辉. 基于上下文注意力的室外点云语义分割方法[J]. 计算机工程, 2023, 49(3): 248-256.
SU M F, HU L K, HUANG R H. Semantic segmentation method for outdoor point clouds based on contextual attention[J]. Computer Engineering, 2023, 49(3): 248-256.
[11] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[12] MITTAL P, SHARMA A, SINGH R, et al. Dilated convolution based RCNN using feature fusion for Low-Altitude aerial objects[J]. Expert Systems with Application, 2022, 199: 117106.
[13] TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning, 2019: 6105-6114.
[14] LIU Y, FAN B, XIANG S, et al. Relation-shape convolutional neural network for point cloud analysis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8895-8904.
[15] 沈露, 杨家志, 周国清, 等. 集自注意力与边卷积的点云分类分割模型[J]. 计算机工程与应用, 2023, 59(19): 106-113.
SHEN L, YANG J Z, ZHOU G Q, et al. Point cloud classi-fication segmentation model based on self?attention and edge convolution[J]. Computer Engineering and Applications, 2023, 59 (19): 106-113.
[16] 顾砾, 季怡, 刘纯平. 基于多模态特征融合的三维点云分类方法[J]. 计算机工程, 2021, 47(2): 279-284.
GU L, JI Y, LIU C P. Classification method of three-dimensional point cloud based on multiple modal feature fusion[J]. Computer Engineering, 2021, 47(2): 279-284.
[17] XIE J, XU Y, ZHENG Z, et al. Generative PointNet: deep energy-based learning on unordered point sets for 3D generation, reconstruction and classification[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
[18] LZA B, JFA C, LONG H A. Semantic segmentation of sparse 3D point cloud based on geometrical features for trellis-structured apple orchard-ScienceDirect[J]. Biosystems Engineering, 2020, 196: 46-55.
[19] XU Y, FAN T, XU M, et al. SpiderCNN: deep learning on point sets with parameterized convolutional filters[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 87-102.
[20] LI Y, BU R, SUN M, et al. PointCNN: convolution on X-transformed points[C]//Advances in Neural Information Processing Systems, 2018.
[21] ZHAO H, JIANG L, FU C W, et al. Pointweb: enhancing local neighborhood features for point cloud processing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5565-5573.
[22] WANG C, SAMARI B, SIDDIQI K. Local spectral graph convolution for point set feature learning[C]//Proceedings of the European Conference on Computer Vision, 2018: 52-66.
[23] ZHANG W, SU S, WANG B, et al. Local k-NNs pattern in omni-direction graph convolution neural network for 3D point clouds[J]. Neurocomputing, 2020, 413: 487-498.
[24] NEZHADARYA E, TAGHAVI E, RAZANI R, et al. Adaptive hierarchical down-sampling for point cloud classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12956-12964.
[25] ZHAO H, JIANG L, JIA J, et al. Point transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 16259-16268.
[26] MAO J, WANG X, LI H. Interpolated convolutional networks for 3d point cloud understanding[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1578-1587.
[27] LU Q, CHEN C, XIE W, et al. PointNGCNN: deep convolutional networks on 3D point clouds with neighborhood graph filters[J]. Computers & Graphics, 2020, 86: 42-51.
[28] LIANG Z, YANG M, DENG L, et al. Hierarchical depthwise graph convolutional neural network for 3D semantic segmentation of point clouds[C]//2019 International Conference on Robotics and Automation (ICRA), 2019: 8152-8158.
[29] YANG J, ZHANG Q, NI B, et al. Modeling point clouds with self-attention and gumbel subset sampling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3323-3332.
[30] WANG L, HUANG Y, HOU Y, et al. Graph attention convolution for point cloud semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10296-10305.
[31] XU M, DING R, ZHAO H, et al. PAConv: position adaptive convolution with dynamic kernel assembling on point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3173-3182. |