计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (6): 134-141.DOI: 10.3778/j.issn.1002-8331.2009-0477
孙雨新,曹晓梅,王少辉
SUN Yuxin, CAO Xiaomei, WANG Shaohui
摘要: 传统推荐算法大多使用用户评分数据来推测用户偏好,仅用评分数据会导致推荐结果单一,缺乏多样性和个性化,同时评分数据还普遍存在严重的稀疏性问题。针对上述问题,提出了一种基于情境信息迁移的因子分解机推荐算法。根据情境信息对数据集进行划分,利用自适应增强方法对不同情境下的数据样本进行迁移处理,将处理后的数据集放入因子分解机,实现评分预测。实验结果表明该算法能在充分使用数据样本、缓解稀疏性问题同时,进行更准确的个性化推荐,相较于传统推荐算法推荐误差降低了2.05%。