计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (24): 1-11.DOI: 10.3778/j.issn.1002-8331.2007-0475

• 热点与综述 • 上一篇    下一篇

基于深度学习的数据融合方法研究综述

张红,程传祺,徐志刚,李建华   

  1. 1.兰州理工大学 计算机与通信学院,兰州 730050
    2.兰州理工大学 机电工程学院,兰州 730050
  • 出版日期:2020-12-15 发布日期:2020-12-15

Survey of Data Fusion Based on Deep Learning

ZHANG Hong, CHENG Chuanqi, XU Zhigang, LI Jianhua   

  1. 1.School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
    2.School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • Online:2020-12-15 Published:2020-12-15

摘要:

数据融合是最大程度发挥大数据价值的关键,深度学习是挖掘数据深层特征信息的技术利器,基于深度学习的数据融合能够充分挖掘大数据潜在价值,从新的深度和广度拓展对世界的探索和认识。综述了近几年基于深度学习的数据融合方法的相关文献,以此了解深度学习在数据融合中应用所具有的优势。分类阐述常见的数据融合方法,同时指出这些方法的优点和不足。从基于深度学习特征提取的数据融合方法、基于深度学习融合的数据融合方法、基于深度学习全过程的数据融合方法三个方面对基于深度学习的数据融合方法进行分析,并做了对比研究与总结。总结全文并讨论了深度学习在数据融合中应用的难点和未来需要进一步研究的问题。

关键词: 数据融合, 信息融合, 深度学习, 算法分类

Abstract:

As data fusion is the key to maximize the value of big data, while deep learning is a technical tool for mining deep characteristic information of data, data fusion based on deep learning can fully tap the potential value of big data, thus expanding the exploration and understanding of the world to a new depth and breadth. And this paper learns the advantages of deep learning in data fusion by reviewing the literature related to data fusion based on deep learning in recent years. The common data-fusion methods are classified, the advantages and disadvantages of which are pointed out. Analysis is conducted on data fusion method based on deep learning from three perspectives, namely the data fusion method extracted based on features of deep learning, data fusion method based on deep learning fusion and data fusion method based on the whole process of deep learning, and corresponding comparisons and summaries are conducted as well. This paper summarizes the whole document, discusses the difficulties in the application of deep learning in data fusion and the problems which require further research in the future.

Key words: data fusion, information fusion, deep learning, algorithm classification