计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (14): 88-92.DOI: 10.3778/j.issn.1002-8331.1904-0420
周龙,王晨,史崯
ZHOU Long, WANG Chen, SHI Yin
摘要:
近年来,互联网行业发展迅速,网络安全的重要性与日俱增。网络安全领域涉及到各种问题,比如恶意代码检测、攻击溯源等,而Webshell作为一种恶意代码,也得到了学术界和业界的关注。Webshell的检测方法除了简单低效的关键词匹配之外,还有各种机器学习算法。Webshell代码经过逃逸技术处理之后,基于关键词匹配的检测算法无法有效检测出Webshell,常规的机器学习算法不能提取深层特征,检测准确率不高。因此,提出基于RNN的Webshell检测方法。实验结果表明,该方法在准确率、漏报率、误报率等指标上优于传统的机器学习算法。